Curvature and local matchings of conference graphs and extensions

Kaizhe Chen, Shiping Liu, Heng Zhang
{"title":"Curvature and local matchings of conference graphs and extensions","authors":"Kaizhe Chen, Shiping Liu, Heng Zhang","doi":"arxiv-2409.06418","DOIUrl":null,"url":null,"abstract":"We confirm a conjecture of Bonini et. al. on the precise Lin-Lu-Yau curvature\nvalues of conference graphs, i.e., strongly regular graphs with parameters\n$(4\\gamma+1,2\\gamma,\\gamma-1,\\gamma)$, with $\\gamma\\geq 2$. Our method only\ndepends on the parameter relations and applies to more general classes of amply\nregular graphs. In particular, we develop a new combinatorial method for\nshowing the existence of local perfect matchings. A key observation is that\ncounting common neighbors leads to useful quadratic polynomials. Our result\nalso leads to an interesting number theoretic consequence on quadratic\nresidues.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We confirm a conjecture of Bonini et. al. on the precise Lin-Lu-Yau curvature values of conference graphs, i.e., strongly regular graphs with parameters $(4\gamma+1,2\gamma,\gamma-1,\gamma)$, with $\gamma\geq 2$. Our method only depends on the parameter relations and applies to more general classes of amply regular graphs. In particular, we develop a new combinatorial method for showing the existence of local perfect matchings. A key observation is that counting common neighbors leads to useful quadratic polynomials. Our result also leads to an interesting number theoretic consequence on quadratic residues.
会议图的曲率和局部匹配及扩展
我们证实了Bonini等人关于会议图(即参数为$(4\gamma+1,2\gamma,\gamma-1,\gamma)$的强规则图,参数为$\gamma\geq 2$)的精确Lin-Lu-Yau曲率值的猜想。我们的方法只依赖于参数关系,并适用于更一般的充规则图类。特别是,我们开发了一种新的组合方法来显示局部完全匹配的存在。一个关键的观察结果是,计算共同邻接会得到有用的二次多项式。我们的结果还引出了关于二次残差的一个有趣的数论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信