The power series expansions of logarithmic Sobolev, $\mathcal{W}$- functionals and scalar curvature rigidity

Liang Cheng
{"title":"The power series expansions of logarithmic Sobolev, $\\mathcal{W}$- functionals and scalar curvature rigidity","authors":"Liang Cheng","doi":"arxiv-2409.06117","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain that logarithmic Sobolev and $\\mathcal{W}$-\nfunctionals have fantastic power series expansion formulas when we choose\nsuitable test functions. By using these power series expansion formulas, we\nprove that if for some open subset $V$ in an $n$-dimensional manifold\nsatisfying $$ \\frac{ \\int_V R d\\mu}{\\mathrm{Vol}(V)} \\ge n(n-1)K$$ and the\nisoperimetric profile of $V$ satisfying $$ \\operatorname{I}(V,\\beta)\\doteq\n\\inf\\limits_{\\Omega\\subset V,\\mathrm{Vol}(\\Omega)=\\beta}\\mathrm{Area}(\\partial\n\\Omega) \\ge \\operatorname{I}(M^n_K,\\beta),$$ for all $\\beta<\\beta_0$ and some\n$\\beta_0>0$, where $R$ is the scalar curvature and $M^n_K$ is the space form of\nconstant sectional curvature $K$,then $\\operatorname{Sec}(x)=K$ for all $x\\in\nV$. We also get several other new scalar curvature rigidity theorems regarding\nisoperimetric profile, logarithmic Sobolev inequality and Perelman's\n$\\boldsymbol{\\mu}$-functional.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain that logarithmic Sobolev and $\mathcal{W}$- functionals have fantastic power series expansion formulas when we choose suitable test functions. By using these power series expansion formulas, we prove that if for some open subset $V$ in an $n$-dimensional manifold satisfying $$ \frac{ \int_V R d\mu}{\mathrm{Vol}(V)} \ge n(n-1)K$$ and the isoperimetric profile of $V$ satisfying $$ \operatorname{I}(V,\beta)\doteq \inf\limits_{\Omega\subset V,\mathrm{Vol}(\Omega)=\beta}\mathrm{Area}(\partial \Omega) \ge \operatorname{I}(M^n_K,\beta),$$ for all $\beta<\beta_0$ and some $\beta_0>0$, where $R$ is the scalar curvature and $M^n_K$ is the space form of constant sectional curvature $K$,then $\operatorname{Sec}(x)=K$ for all $x\in V$. We also get several other new scalar curvature rigidity theorems regarding isoperimetric profile, logarithmic Sobolev inequality and Perelman's $\boldsymbol{\mu}$-functional.
对数索波列夫、$\mathcal{W}$- 函数的幂级数展开与标量曲率刚度
在本文中,当我们选择合适的检验函数时,我们得到对数Sobolev和$mathcal{W}$函数具有奇妙的幂级数展开公式。通过使用这些幂级数展开公式,我们证明,如果在一个 $n$ 维流形中,对于某个开放子集 $V$ 满足 $$ \frac{ \int_V R d\mu}\{mathrm{Vol}(V)} \ge n(n-1)K$$ 且 $V$ 的等距轮廓满足 $$ \operatorname{I}(V,\beta)\doteq\inf\limits_{\Omega\subset V、\mathrm{Vol}(\Omega)=\beta}\mathrm{Area}(\partial\Omega) \ge \operatorname{I}(M^n_K,\beta),$$ for all $\beta0$、其中 $R$ 是标量曲率,$M^n_K$ 是恒定截面曲率 $K$ 的空间形式,那么对于所有 $x\inV$ 来说,$\operatorname{Sec}(x)=K$。我们还得到了关于等周剖面、对数索波列夫不等式和佩雷尔曼函数的其他几个新的标量曲率刚性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信