On the \texorpdfstring{$ν$}{nu}-invariant of two-step nilmanifolds with closed \texorpdfstring{$\mathrm G_2$}{G2}-structure

Anna Fino, Gueo Grantcharov, Giovanni Russo
{"title":"On the \\texorpdfstring{$ν$}{nu}-invariant of two-step nilmanifolds with closed \\texorpdfstring{$\\mathrm G_2$}{G2}-structure","authors":"Anna Fino, Gueo Grantcharov, Giovanni Russo","doi":"arxiv-2409.06870","DOIUrl":null,"url":null,"abstract":"For every non-vanishing spinor field on a Riemannian $7$-manifold, Crowley,\nGoette, and Nordstr\\\"om introduced the so-called $\\nu$-invariant. This is an\ninteger modulo $48$, and can be defined in terms of Mathai--Quillen currents,\nharmonic spinors, and $\\eta$-invariants of spin Dirac and odd-signature\noperator. We compute these data for the compact two-step nilmanifolds admitting\ninvariant closed $\\mathrm G_2$-structures, in particular determining the\nharmonic spinors and relevant symmetries of the spectrum of the spin Dirac\noperator. We then deduce the vanishing of the $\\nu$-invariants.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For every non-vanishing spinor field on a Riemannian $7$-manifold, Crowley, Goette, and Nordstr\"om introduced the so-called $\nu$-invariant. This is an integer modulo $48$, and can be defined in terms of Mathai--Quillen currents, harmonic spinors, and $\eta$-invariants of spin Dirac and odd-signature operator. We compute these data for the compact two-step nilmanifolds admitting invariant closed $\mathrm G_2$-structures, in particular determining the harmonic spinors and relevant symmetries of the spectrum of the spin Dirac operator. We then deduce the vanishing of the $\nu$-invariants.
关于具有闭合 \texorpdfstring{$ν$}{G2} 结构的两步无常域的\texorpdfstring{$ν$}{nu}不变量
对于黎曼$7$-manifold上的每一个非消失旋量场,克劳利、戈埃特和诺德斯特罗姆引入了所谓的$\nu$-不变式。它是一个模为48$的整数,可以用马赛-奎伦电流、谐波旋量以及自旋狄拉克和奇异符号算子的$\eta$-不变量来定义。我们计算了接纳不变闭$\mathrm G_2$结构的紧凑两阶零曼形体的这些数据,特别是确定了自旋狄拉克算子谱的谐波旋量和相关对称性。然后我们推导出 $\nu$-invariants 的消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信