Min-max construction of prescribed mean curvature hypersurfaces in noncompact manifolds

Douglas Stryker
{"title":"Min-max construction of prescribed mean curvature hypersurfaces in noncompact manifolds","authors":"Douglas Stryker","doi":"arxiv-2409.07330","DOIUrl":null,"url":null,"abstract":"We develop a min-max theory for hypersurfaces of prescribed mean curvature in\nnoncompact manifolds, applicable to prescription functions that do not change\nsign outside a compact set. We use this theory to prove new existence results\nfor closed prescribed mean curvature hypersurfaces in Euclidean space and\ncomplete finite area constant mean curvature hypersurfaces in finite volume\nmanifolds.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a min-max theory for hypersurfaces of prescribed mean curvature in noncompact manifolds, applicable to prescription functions that do not change sign outside a compact set. We use this theory to prove new existence results for closed prescribed mean curvature hypersurfaces in Euclidean space and complete finite area constant mean curvature hypersurfaces in finite volume manifolds.
非紧凑流形中规定平均曲率超曲面的最小-最大构造
我们为非紧凑流形中的规定平均曲率超曲面提出了一种最小-最大理论,适用于在紧凑集外不改变符号的规定函数。我们利用这一理论证明了欧几里得空间中封闭的规定平均曲率超曲面和有限体积流形中完整的有限面积恒定平均曲率超曲面的新存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信