Fernando Manfio, João Batista Marques dos Santos, João Paulo dos Santos, Joeri Van der Veken
{"title":"Hypersurfaces of $\\mathbb{S}^3 \\times \\mathbb{R}$ and $\\mathbb{H}^3 \\times \\mathbb{R}$ with constant principal curvatures","authors":"Fernando Manfio, João Batista Marques dos Santos, João Paulo dos Santos, Joeri Van der Veken","doi":"arxiv-2409.07978","DOIUrl":null,"url":null,"abstract":"We classify the hypersurfaces of $\\mathbb{Q}^3\\times\\mathbb{R}$ with three\ndistinct constant principal curvatures, where $\\varepsilon \\in \\{1,-1\\}$ and\n$\\mathbb{Q}^3$ denotes the unit sphere $\\mathbb{S}^3$ if $\\varepsilon = 1$,\nwhereas it denotes the hyperbolic space $\\mathbb{H}^3$ if $\\varepsilon = -1$.\nWe show that they are cylinders over isoparametric surfaces in $\\mathbb{Q}^3$,\nfilling an intriguing gap in the existing literature. We also prove that the\nhypersurfaces with constant principal curvatures of\n$\\mathbb{Q}^3\\times\\mathbb{R}$ are isoparametric. Furthermore, we provide the\ncomplete classification of the extrinsically homogeneous hypersurfaces in\n$\\mathbb{Q}^3\\times\\mathbb{R}$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We classify the hypersurfaces of $\mathbb{Q}^3\times\mathbb{R}$ with three
distinct constant principal curvatures, where $\varepsilon \in \{1,-1\}$ and
$\mathbb{Q}^3$ denotes the unit sphere $\mathbb{S}^3$ if $\varepsilon = 1$,
whereas it denotes the hyperbolic space $\mathbb{H}^3$ if $\varepsilon = -1$.
We show that they are cylinders over isoparametric surfaces in $\mathbb{Q}^3$,
filling an intriguing gap in the existing literature. We also prove that the
hypersurfaces with constant principal curvatures of
$\mathbb{Q}^3\times\mathbb{R}$ are isoparametric. Furthermore, we provide the
complete classification of the extrinsically homogeneous hypersurfaces in
$\mathbb{Q}^3\times\mathbb{R}$.