First-principles study of the interaction of solutes with ∑3(11-1) symmetric tilt grain boundaries in α-Fe

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
R M Meftakhutdinov
{"title":"First-principles study of the interaction of solutes with ∑3(11-1) symmetric tilt grain boundaries in α-Fe","authors":"R M Meftakhutdinov","doi":"10.1088/1361-651x/ad6ea9","DOIUrl":null,"url":null,"abstract":"The structural, cohesive and magnetic properties of a symmetric Σ3(70.53)[011](11-1) tilt grain boundary in pure bcc iron and with commonly used alloying elements (Si, Co, Mn, Ti, Cu, Mo, Nb, V, Cr and Ni) by means of density functional theory calculations are studied. Solubility and segregation energies were calculated for different positions of dissolved atoms. Calculations show a tendency for impurities to segregate near the boundary. It was found that the substituting Co, Cu and Ni in the layer adjacent to the boundary have an embrittling effect, while other atoms enhance the cohesion of the grains. Magnetic moments on GB atoms are significantly higher than those on bulk atoms.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad6ea9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The structural, cohesive and magnetic properties of a symmetric Σ3(70.53)[011](11-1) tilt grain boundary in pure bcc iron and with commonly used alloying elements (Si, Co, Mn, Ti, Cu, Mo, Nb, V, Cr and Ni) by means of density functional theory calculations are studied. Solubility and segregation energies were calculated for different positions of dissolved atoms. Calculations show a tendency for impurities to segregate near the boundary. It was found that the substituting Co, Cu and Ni in the layer adjacent to the boundary have an embrittling effect, while other atoms enhance the cohesion of the grains. Magnetic moments on GB atoms are significantly higher than those on bulk atoms.
α-Fe中溶质与∑3(11-1)对称倾斜晶界相互作用的第一性原理研究
通过密度泛函理论计算,研究了纯 bcc 铁和含有常用合金元素(Si、Co、Mn、Ti、Cu、Mo、Nb、V、Cr 和 Ni)的对称 Σ3(70.53)[011](11-1)倾斜晶界的结构、内聚力和磁性。计算了溶解原子不同位置的溶解度和偏析能。计算结果表明,杂质倾向于在边界附近发生偏析。研究发现,边界邻近层中的 Co、Cu 和 Ni 具有脆化作用,而其他原子则增强了晶粒的内聚力。GB 原子上的磁矩明显高于体原子上的磁矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信