Diane S. Lindquist, Brenda E. Sparrow, Joseph M. Lindquist
{"title":"Spaced recall reduces forgetting of fundamental mathematical concepts in a post high school precalculus course","authors":"Diane S. Lindquist, Brenda E. Sparrow, Joseph M. Lindquist","doi":"10.1007/s11251-024-09680-w","DOIUrl":null,"url":null,"abstract":"<p>The retention of fundamental mathematical skills is imperative to provide a foundation on which new skills are developed. Educators often lament about student retention. Cognitive scientists and educators have explored teaching methods that produce learning which endures over time. We wanted to know if using spaced recall quizzes would prevent our students from forgetting fundamental mathematical concepts at a post high school preparatory school where students attend for 1 year preparing to enter the United States Military Academy (USMA). This approach was implemented in a Precalculus course to determine if it would improve students’ long-term retention. Our goal was to identify an effective classroom strategy that led to student recall of fundamental mathematical concepts through the end of the academic year. The concepts that were considered for long-term retention were 12 concepts identified by USMA’s mathematics department as being fundamental for entering students. These concepts are taught during quarter one of the Precalculus with Introduction to Calculus course at the United States Military Academy Preparatory School. It is expected that students will remember the concepts when they take the post-test 6 months later. Our research shows that spaced recall in the form of quizzing had a statistically significant impact on reducing the forgetting of the fundamental concepts while not adversely effecting performance on current instructional concepts. Additionally, these results persisted across multiple sections of the course taught at different times of the day by six instructors with varying teaching styles and years of teaching experience.</p>","PeriodicalId":47990,"journal":{"name":"Instructional Science","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instructional Science","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11251-024-09680-w","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
The retention of fundamental mathematical skills is imperative to provide a foundation on which new skills are developed. Educators often lament about student retention. Cognitive scientists and educators have explored teaching methods that produce learning which endures over time. We wanted to know if using spaced recall quizzes would prevent our students from forgetting fundamental mathematical concepts at a post high school preparatory school where students attend for 1 year preparing to enter the United States Military Academy (USMA). This approach was implemented in a Precalculus course to determine if it would improve students’ long-term retention. Our goal was to identify an effective classroom strategy that led to student recall of fundamental mathematical concepts through the end of the academic year. The concepts that were considered for long-term retention were 12 concepts identified by USMA’s mathematics department as being fundamental for entering students. These concepts are taught during quarter one of the Precalculus with Introduction to Calculus course at the United States Military Academy Preparatory School. It is expected that students will remember the concepts when they take the post-test 6 months later. Our research shows that spaced recall in the form of quizzing had a statistically significant impact on reducing the forgetting of the fundamental concepts while not adversely effecting performance on current instructional concepts. Additionally, these results persisted across multiple sections of the course taught at different times of the day by six instructors with varying teaching styles and years of teaching experience.
期刊介绍:
Instructional Science, An International Journal of the Learning Sciences, promotes a deeper understanding of the nature, theory, and practice of learning and of environments in which learning occurs. The journal’s conception of learning, as well as of instruction, is broad, recognizing that there are many ways to stimulate and support learning. The journal encourages submission of research papers, covering a variety of perspectives from the learning sciences and learning, by people of all ages, in all areas of the curriculum, in technologically rich or lean environments, and in informal and formal learning contexts. Emphasizing reports of original empirical research, the journal provides space for full and detailed reporting of major studies. Regardless of the topic, papers published in the journal all make an explicit contribution to the science of learning and instruction by drawing out the implications for the design and implementation of learning environments. We particularly encourage the submission of papers that highlight the interaction between learning processes and learning environments, focus on meaningful learning, and recognize the role of context. Papers are characterized by methodological variety that ranges, for example, from experimental studies in laboratory settings, to qualitative studies, to design-based research in authentic learning settings. The Editors will occasionally invite experts to write a review article on an important topic in the field. When review articles are considered for publication, they must deal with central issues in the domain of learning and learning environments. The journal accepts replication studies. Such a study should replicate an important and seminal finding in the field, from a study which was originally conducted by a different research group. Most years, Instructional Science publishes a guest-edited thematic special issue on a topic central to the journal''s scope. Proposals for special issues can be sent to the Editor-in-Chief. Proposals will be discussed in Spring and Fall of each year, and the proposers will be notified afterwards. To be considered for the Spring and Fall discussion, proposals should be sent to the Editor-in-Chief by March 1 and October 1, respectively. Please note that articles that are submitted for a special issue will follow the same review process as regular articles.