The nucleus of a $Q$-polynomial distance-regular graph

Paul Terwilliger
{"title":"The nucleus of a $Q$-polynomial distance-regular graph","authors":"Paul Terwilliger","doi":"arxiv-2408.11282","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ denote a $Q$-polynomial distance-regular graph with diameter\n$D\\geq 1$. For a vertex $x$ of $\\Gamma$ the corresponding subconstituent\nalgebra $T=T(x)$ is generated by the adjacency matrix $A$ of $\\Gamma$ and the\ndual adjacency matrix $A^*=A^*(x)$ of $\\Gamma$ with respect to $x$. We\nintroduce a $T$-module $\\mathcal N = \\mathcal N(x)$ called the nucleus of\n$\\Gamma$ with respect to $x$. We describe $\\mathcal N$ from various points of\nview. We show that all the irreducible $T$-submodules of $\\mathcal N$ are thin.\nUnder the assumption that $\\Gamma$ is a nonbipartite dual polar graph, we give\nan explicit basis for $\\mathcal N$ and the action of $A, A^*$ on this basis.\nThe basis is in bijection with the set of elements for the projective geometry\n$L_D(q)$, where $GF(q)$ is the finite field used to define $\\Gamma$.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Gamma$ denote a $Q$-polynomial distance-regular graph with diameter $D\geq 1$. For a vertex $x$ of $\Gamma$ the corresponding subconstituent algebra $T=T(x)$ is generated by the adjacency matrix $A$ of $\Gamma$ and the dual adjacency matrix $A^*=A^*(x)$ of $\Gamma$ with respect to $x$. We introduce a $T$-module $\mathcal N = \mathcal N(x)$ called the nucleus of $\Gamma$ with respect to $x$. We describe $\mathcal N$ from various points of view. We show that all the irreducible $T$-submodules of $\mathcal N$ are thin. Under the assumption that $\Gamma$ is a nonbipartite dual polar graph, we give an explicit basis for $\mathcal N$ and the action of $A, A^*$ on this basis. The basis is in bijection with the set of elements for the projective geometry $L_D(q)$, where $GF(q)$ is the finite field used to define $\Gamma$.
Q$多项式距离规则图的核
让 $\Gamma$ 表示一个直径为 $D\geq 1$ 的 $Q$ 多项式距离规则图。对于 $\Gamma$ 的顶点 $x$,相应的子构元代数 $T=T(x)$ 由 $\Gamma$ 的邻接矩阵 $A$ 和 $\Gamma$ 关于 $x$ 的双邻接矩阵 $A^*=A^*(x)$ 生成。我们引入一个 $T$ 模块 $\mathcal N = \mathcal N(x)$ 称为 $\Gamma$ 关于 $x$ 的核。我们从不同角度描述了 $\mathcal N$。我们证明了 $\mathcal N$ 的所有不可还原的 $T$ 子模块都是薄的。在假设 $\Gamma$ 是一个非双方对偶极坐标图的情况下,我们给出了 $\mathcal N$ 的一个明确的基础以及 $A, A^*$ 在这个基础上的作用。这个基础与投影几何$L_D(q)$ 的元素集是双射的,其中$GF(q)$ 是用来定义 $\Gamma$ 的有限域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信