Flatness of $α$-induced bi-unitary connections and commutativity of Frobenius algebras

Yasuyuki Kawahigashi
{"title":"Flatness of $α$-induced bi-unitary connections and commutativity of Frobenius algebras","authors":"Yasuyuki Kawahigashi","doi":"arxiv-2408.05501","DOIUrl":null,"url":null,"abstract":"The tensor functor called $\\alpha$-induction produces a new unitary fusion\ncategory from a Frobenius algebra, or a $Q$-system, in a braided unitary fusion\ncategory. A bi-unitary connection, which is a finite family of complex number\nsubject to some axioms, realizes an object in any unitary fusion category. It\nalso gives a characterization of a finite-dimensional nondegenerate commuting\nsquare in subfactor theory of Jones and realizes a certain $4$-tensor appearing\nin recent studies of $2$-dimensional topological order. We study\n$\\alpha$-induction for bi-unitary connections, and show that flatness of the\nresulting $\\alpha$-induced bi-unitary connections implies commutativity of the\noriginal Frobenius algebra. This gives a converse of our previous result and\nanswers a question raised by R. Longo. We furthermore give finer correspondence\nbetween the flat parts of the $\\alpha$-induced bi-unitary connections and the\ncommutative Frobenius subalgebras studied by B\\\"ockenhauer-Evans.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tensor functor called $\alpha$-induction produces a new unitary fusion category from a Frobenius algebra, or a $Q$-system, in a braided unitary fusion category. A bi-unitary connection, which is a finite family of complex number subject to some axioms, realizes an object in any unitary fusion category. It also gives a characterization of a finite-dimensional nondegenerate commuting square in subfactor theory of Jones and realizes a certain $4$-tensor appearing in recent studies of $2$-dimensional topological order. We study $\alpha$-induction for bi-unitary connections, and show that flatness of the resulting $\alpha$-induced bi-unitary connections implies commutativity of the original Frobenius algebra. This gives a converse of our previous result and answers a question raised by R. Longo. We furthermore give finer correspondence between the flat parts of the $\alpha$-induced bi-unitary connections and the commutative Frobenius subalgebras studied by B\"ockenhauer-Evans.
α$引起的双单元连接的平坦性与弗罗贝尼斯代数的交换性
被称为$\alpha$-induction的张量函子从弗罗贝纽斯代数或$Q$-系统中产生一个新的单元融合范畴,该范畴是一个编织单元融合范畴。双单元连接是符合某些公理的复数有限族,它实现了任何单元融合范畴中的一个对象。伊塔索给出了琼斯子因子理论中有限维非enerate换元平方的特征,并实现了最近对2元维拓扑阶的研究中出现的某个4元张量。我们研究了双单元连接的$\alpha$-induction,并证明由此产生的$\alpha$-induced 双单元连接的平坦性意味着原始弗罗本尼斯代数的换元性。这给出了我们之前结果的反义,并回答了朗格(R. Longo)提出的一个问题。我们还进一步给出了$\α$诱导双单元连接的平面部分与布肯豪尔-埃文斯研究的交换弗罗贝尼斯子代数之间更精细的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信