Logarithmic morphisms, tangential basepoints, and little disks

Clément Dupont, Erik Panzer, Brent Pym
{"title":"Logarithmic morphisms, tangential basepoints, and little disks","authors":"Clément Dupont, Erik Panzer, Brent Pym","doi":"arxiv-2408.13108","DOIUrl":null,"url":null,"abstract":"We develop the theory of ``virtual morphisms'' in logarithmic algebraic\ngeometry, introduced by Howell. It allows one to give algebro-geometric meaning\nto various useful maps of topological spaces that do not correspond to\nmorphisms of (log) schemes in the classical sense, while retaining\nfunctoriality of key constructions. In particular, we explain how virtual\nmorphisms provide a natural categorical home for Deligne's theory of tangential\nbasepoints: the latter are simply the virtual morphisms from a point. We also\nextend Howell's results on the functoriality of Betti and de Rham cohomology. Using this framework, we lift the topological operad of little $2$-disks to\nan operad in log schemes over the integers, whose virtual points are\nisomorphism classes of stable marked curves of genus zero equipped with a\ntangential basepoint. The gluing of such curves along marked points is\nperformed using virtual morphisms that transport tangential basepoints around\nthe curves. This builds on Vaintrob's analogous construction for framed little\ndisks, for which the classical notion of morphism in logarithmic geometry\nsufficed. In this way, we obtain a direct algebro-geometric proof of the\nformality of the little disks operad, following the strategy envisioned by\nBeilinson. Furthermore, Bar-Natan's parenthesized braids naturally appear as\nthe fundamental groupoids of our moduli spaces, with all virtual basepoints\ndefined over the integers.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop the theory of ``virtual morphisms'' in logarithmic algebraic geometry, introduced by Howell. It allows one to give algebro-geometric meaning to various useful maps of topological spaces that do not correspond to morphisms of (log) schemes in the classical sense, while retaining functoriality of key constructions. In particular, we explain how virtual morphisms provide a natural categorical home for Deligne's theory of tangential basepoints: the latter are simply the virtual morphisms from a point. We also extend Howell's results on the functoriality of Betti and de Rham cohomology. Using this framework, we lift the topological operad of little $2$-disks to an operad in log schemes over the integers, whose virtual points are isomorphism classes of stable marked curves of genus zero equipped with a tangential basepoint. The gluing of such curves along marked points is performed using virtual morphisms that transport tangential basepoints around the curves. This builds on Vaintrob's analogous construction for framed little disks, for which the classical notion of morphism in logarithmic geometry sufficed. In this way, we obtain a direct algebro-geometric proof of the formality of the little disks operad, following the strategy envisioned by Beilinson. Furthermore, Bar-Natan's parenthesized braids naturally appear as the fundamental groupoids of our moduli spaces, with all virtual basepoints defined over the integers.
对数变形、切向基点和小圆盘
我们发展了豪厄尔引入的对数代数几何中的 "虚变形 "理论。它允许我们赋予拓扑空间的各种有用映射以代数几何的意义,而这些映射并不对应于经典意义上的(对数)方案的形态,同时保留了关键构造的矢量性。特别是,我们解释了虚变形如何为德莱尼的切向基点理论提供了一个自然的分类归宿:后者仅仅是来自一个点的虚变形。我们还扩展了豪厄尔关于贝蒂同调与德拉姆同调的函数性的结果。利用这个框架,我们把小 2$ 盘的拓扑操作数提升为整数对数方案中的操作数,其虚点是零属的稳定有标记曲线的同构类,并配有切向基点。利用在曲线周围传送切向基点的虚变形,可以沿标记点粘合这些曲线。这建立在范特罗布(Vaintrob)对有框小圆盘的类似构造基础之上,对有框小圆盘的构造需要对数几何中的经典形态概念。通过这种方法,我们按照贝林森设想的策略,得到了小磁盘运算符形式性的直接代数几何证明。此外,巴-纳坦的括号自然地成为我们模空间的基群,所有虚基点都定义在整数上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信