Quantum graphs, subfactors and tensor categories I

Michael Brannan, Roberto Hernández Palomares
{"title":"Quantum graphs, subfactors and tensor categories I","authors":"Michael Brannan, Roberto Hernández Palomares","doi":"arxiv-2409.01951","DOIUrl":null,"url":null,"abstract":"We develop an equivariant theory of graphs with respect to quantum symmetries\nand present a detailed exposition of various examples. We portray unitary\ntensor categories as a unifying framework encompassing all finite classical\nsimple graphs, (quantum) Cayley graphs of finite (quantum) groupoids, and all\nfinite-dimensional quantum graphs. We model a quantum set by a finite-index\ninclusion of C*-algebras and use the quantum Fourier transform to obtain all\npossible adjacency operators. In particular, we show every finite-index\nsubfactor can be regarded as a complete quantum graph and describe how to find\nall its subgraphs. As applications, we prove a version of Frucht's Theorem for\nfinite quantum groupoids, and introduce a version of path spaces for quantum\ngraphs.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"220 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an equivariant theory of graphs with respect to quantum symmetries and present a detailed exposition of various examples. We portray unitary tensor categories as a unifying framework encompassing all finite classical simple graphs, (quantum) Cayley graphs of finite (quantum) groupoids, and all finite-dimensional quantum graphs. We model a quantum set by a finite-index inclusion of C*-algebras and use the quantum Fourier transform to obtain all possible adjacency operators. In particular, we show every finite-index subfactor can be regarded as a complete quantum graph and describe how to find all its subgraphs. As applications, we prove a version of Frucht's Theorem for finite quantum groupoids, and introduce a version of path spaces for quantum graphs.
量子图、子因子和张量类别 I
我们发展了关于量子对称性的图等变理论,并详细阐述了各种实例。我们把单位张量范畴描绘成一个统一的框架,涵盖了所有有限经典简单图、有限(量子)群集的(量子)卡莱图和所有有限维量子图。我们用 C* 结构的有限指数包含来模拟量子集合,并使用量子傅立叶变换来获得所有可能的邻接算子。特别是,我们证明了每个有限指数子因子都可视为一个完整的量子图,并描述了如何找到它的所有子图。作为应用,我们证明了有限量子群的弗鲁希特定理的一个版本,并介绍了量子图的路径空间版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信