Continuous data assimilation for the three dimensional primitive equations with magnetic field

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Yongqing Zhao, Wenjun Liu, Guangying Lv, Yuepeng Wang
{"title":"Continuous data assimilation for the three dimensional primitive equations with magnetic field","authors":"Yongqing Zhao, Wenjun Liu, Guangying Lv, Yuepeng Wang","doi":"10.3233/asy-241912","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of continuous data assimilation of three dimensional primitive equations with magnetic field in thin domain is studied. We establish the well-posedness of the assimilation system and prove that the H2-strong solution of the assimilation system converges exponentially to the reference solution in the sense of L2 as t→∞. We also study the sensitivity analysis of the assimilation system and prove that a sequence of solutions of the difference quotient equation converge to the unique solution of the formal sensitivity equation.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"2013 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241912","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the problem of continuous data assimilation of three dimensional primitive equations with magnetic field in thin domain is studied. We establish the well-posedness of the assimilation system and prove that the H2-strong solution of the assimilation system converges exponentially to the reference solution in the sense of L2 as t→∞. We also study the sensitivity analysis of the assimilation system and prove that a sequence of solutions of the difference quotient equation converge to the unique solution of the formal sensitivity equation.
带磁场的三维原始方程的连续数据同化
本文研究了薄域中带有磁场的三维基元方程的连续数据同化问题。我们建立了同化系统的好拟性,并证明同化系统的 H2 强解在 L2 意义上随着 t→∞ 指数收敛于参考解。我们还研究了同化系统的灵敏度分析,并证明差商方程的一系列解收敛于形式灵敏度方程的唯一解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信