{"title":"Ground state solutions for the Hamilton–Choquard elliptic system with critical exponential growth","authors":"Minlan Guan, Lizhen Lai, Boxue Liu, Dongdong Qin","doi":"10.3233/asy-241916","DOIUrl":null,"url":null,"abstract":"In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-241916","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the following Hamilton–Choquard type elliptic system: −Δu+u=(Iα∗F(v))f(v),x∈R2,−Δv+v=(Iβ∗F(u))f(u),x∈R2, where Iα and Iβ are Riesz potentials, f:R→R possessing critical exponential growth at infinity and F(t)=∫0tf(s)ds. Without the classic Ambrosetti–Rabinowitz conditionand strictly monotonic condition on f, we will investigate the existence of ground state solution for the above system. The strongly indefinite characteristic of the system, combined with the convolution terms and critical exponential growth, makes such problem interesting and challenging to study. With the help of a proper auxiliary system, we employ an approximation scheme and the non-Nehari manifold method to control the minimax levels by a fine threshold, and succeed in restoring the compactness for the critical problem. Existence of a ground state solution is finally established by the concentration compactness argument and some detailed estimates.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.