On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
A. Yu. Zaitsev
{"title":"On Proximity of Distributions of Successive Sums with Respect to the Prokhorov Distance","authors":"A. Yu. Zaitsev","doi":"10.1137/s0040585x97t991878","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 217-226, August 2024. <br/> Let $X, X_1,\\dots, X_n,\\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\\sqrt{n}$. Then $(X_1+\\dots+X_n)/\\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\\pi(\\,{\\cdot}\\,,{\\cdot}\\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)&gt;0$ and $c_2(F)&gt;0$ depending only on $F$ such that $\\pi(F_{(n)}^n, F_{(n)}^{n+1})\\leqslant c_1(F)/\\sqrt n$ and $(F^n)\\{A\\} \\le (F^{n+1})\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$, $(F^{n+1})\\{A\\} \\leq (F^n)\\{A^{c_2(F)}\\}+c_2(F)/\\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\\varepsilon}$ denotes the $\\varepsilon$-neighborhood of a set $A$).","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991878","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 2, Page 217-226, August 2024.
Let $X, X_1,\dots, X_n,\dots$ be independent identically distributed $d$-dimensional random vectors with common distribution $F$. Let $F_{(n)}$ be the distribution of the normalized random vector $X/\sqrt{n}$. Then $(X_1+\dots+X_n)/\sqrt{n}$ has distribution $F_{(n)}^n$ (the power is understood in the convolution sense). Let $\pi(\,{\cdot}\,,{\cdot}\,)$ be the Prokhorov distance. We show that, for any $d$-dimensional distribution $F$, there exist $c_1(F)>0$ and $c_2(F)>0$ depending only on $F$ such that $\pi(F_{(n)}^n, F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ and $(F^n)\{A\} \le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\} \leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ for each Borel set $A$ and for all natural numbers $n$ (here, $A^{\varepsilon}$ denotes the $\varepsilon$-neighborhood of a set $A$).
论连续和的分布与普罗霍罗夫距离的接近性
概率论及其应用》第 69 卷第 2 期第 217-226 页,2024 年 8 月。 设 $X,X_1,\dots,X_n,\dots$ 是独立同分布的 $d$ 维随机向量,其共同分布为 $F$。假设 $F_{(n)}$ 是归一化随机向量 $X/\sqrt{n}$ 的分布。那么 $(X_1+\dots+X_n)/\sqrt{n}$ 的分布为 $F_{(n)}^n$(幂是在卷积意义上理解的)。让 $\pi(\,{\cdot}\,,{\cdot}\,)$ 成为普罗霍罗夫距离。我们将证明,对于任意 $d$ 维分布 $F$,存在仅依赖于 $F$ 的 $c_1(F)>0$ 和 $c_2(F)>0$ ,使得 $\pi(F_{(n)}^n,F_{(n)}^{n+1})\leqslant c_1(F)/\sqrt n$ 和 $(F^n)\{A\}。\le (F^{n+1})\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$, $(F^{n+1})\{A\}\leq (F^n)\{A^{c_2(F)}\}+c_2(F)/\sqrt{n}$ 对于每个伯尔集合 $A$ 和所有自然数 $n$(这里,$A^{\varepsilon}$ 表示集合 $A$ 的 $\varepsilon$-邻域)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信