On Absolute Continuity of the Erdös Measure for the Golden Ratio, Tribonacci Numbers, and Second-Order Markov Chains

Pub Date : 2024-08-14 DOI:10.1137/s0040585x97t991908
V. L. Kulikov, E. F. Olekhova, V. I. Oseledets
{"title":"On Absolute Continuity of the Erdös Measure for the Golden Ratio, Tribonacci Numbers, and Second-Order Markov Chains","authors":"V. L. Kulikov, E. F. Olekhova, V. I. Oseledets","doi":"10.1137/s0040585x97t991908","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 2, Page 265-280, August 2024. <br/> We consider a power series at a fixed point $\\rho \\in (0.5,1)$, where random coefficients assume a value $0$ or $1$ and form a stationary ergodic aperiodic process. The Erdös measure is the distribution law of such a series. The problem of absolute continuity of the Erdös measure is reduced to the problem of determining when the corresponding hidden Markov chain is a Parry--Markov chain. For the golden ratio and a 1-Markov chains, we give necessary and sufficient conditions for absolute continuity of the Erdös measure and, using Blackwell--Markov chains, provide a new proof that the necessary conditions obtained earlier by Bezhaeva and Oseledets [Theory Probab. Appl., 51 (2007), pp. 28--41] are also sufficient. For tribonacci numbers and 1-Markov chains, we give a new proof of the theorem on singularity of the Erdös measure. For tribonacci numbers and 2-Markov chains, we find only two cases with absolute continuity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 2, Page 265-280, August 2024.
We consider a power series at a fixed point $\rho \in (0.5,1)$, where random coefficients assume a value $0$ or $1$ and form a stationary ergodic aperiodic process. The Erdös measure is the distribution law of such a series. The problem of absolute continuity of the Erdös measure is reduced to the problem of determining when the corresponding hidden Markov chain is a Parry--Markov chain. For the golden ratio and a 1-Markov chains, we give necessary and sufficient conditions for absolute continuity of the Erdös measure and, using Blackwell--Markov chains, provide a new proof that the necessary conditions obtained earlier by Bezhaeva and Oseledets [Theory Probab. Appl., 51 (2007), pp. 28--41] are also sufficient. For tribonacci numbers and 1-Markov chains, we give a new proof of the theorem on singularity of the Erdös measure. For tribonacci numbers and 2-Markov chains, we find only two cases with absolute continuity.
分享
查看原文
论黄金比率、Tribonacci 数和二阶马尔可夫链的厄尔多斯测度的绝对连续性
概率论及其应用》第 69 卷第 2 期第 265-280 页,2024 年 8 月。 我们考虑在 (0.5,1)$ 的定点 $\rho \ 的幂级数,其中随机系数的值为 $0$ 或 $1$,并形成一个静止的遍历非周期性过程。厄尔多斯量度就是这种序列的分布规律。埃尔德斯量度的绝对连续性问题可以简化为确定相应的隐马尔可夫链是帕里-马尔可夫链的问题。对于黄金分割率和 1-Markov 链,我们给出了厄多斯度量绝对连续性的必要条件和充分条件,并利用 Blackwell-Markov 链给出了新的证明,即 Bezhaeva 和 Oseledets [Theory Probab. Appl.对于三波纳奇数和 1-Markov 链,我们给出了关于厄尔多斯量度奇异性定理的新证明。对于tribonacci数和2-Markov链,我们发现只有两种情况具有绝对连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信