A New Dataset, Notation Software, and Representation for Computational Schenkerian Analysis

Stephen Ni-Hahn, Weihan Xu, Jerry Yin, Rico Zhu, Simon Mak, Yue Jiang, Cynthia Rudin
{"title":"A New Dataset, Notation Software, and Representation for Computational Schenkerian Analysis","authors":"Stephen Ni-Hahn, Weihan Xu, Jerry Yin, Rico Zhu, Simon Mak, Yue Jiang, Cynthia Rudin","doi":"arxiv-2408.07184","DOIUrl":null,"url":null,"abstract":"Schenkerian Analysis (SchA) is a uniquely expressive method of music\nanalysis, combining elements of melody, harmony, counterpoint, and form to\ndescribe the hierarchical structure supporting a work of music. However,\ndespite its powerful analytical utility and potential to improve music\nunderstanding and generation, SchA has rarely been utilized by the computer\nmusic community. This is in large part due to the paucity of available\nhigh-quality data in a computer-readable format. With a larger corpus of\nSchenkerian data, it may be possible to infuse machine learning models with a\ndeeper understanding of musical structure, thus leading to more \"human\"\nresults. To encourage further research in Schenkerian analysis and its\npotential benefits for music informatics and generation, this paper presents\nthree main contributions: 1) a new and growing dataset of SchAs, the largest in\nhuman- and computer-readable formats to date (>140 excerpts), 2) a novel\nsoftware for visualization and collection of SchA data, and 3) a novel,\nflexible representation of SchA as a heterogeneous-edge graph data structure.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Schenkerian Analysis (SchA) is a uniquely expressive method of music analysis, combining elements of melody, harmony, counterpoint, and form to describe the hierarchical structure supporting a work of music. However, despite its powerful analytical utility and potential to improve music understanding and generation, SchA has rarely been utilized by the computer music community. This is in large part due to the paucity of available high-quality data in a computer-readable format. With a larger corpus of Schenkerian data, it may be possible to infuse machine learning models with a deeper understanding of musical structure, thus leading to more "human" results. To encourage further research in Schenkerian analysis and its potential benefits for music informatics and generation, this paper presents three main contributions: 1) a new and growing dataset of SchAs, the largest in human- and computer-readable formats to date (>140 excerpts), 2) a novel software for visualization and collection of SchA data, and 3) a novel, flexible representation of SchA as a heterogeneous-edge graph data structure.
用于计算申克分析的新数据集、符号软件和表示法
申克分析法(Schenkerian Analysis,简称 SchA)是一种独具表现力的音乐分析方法,它将旋律、和声、对位和形式等元素结合起来,描绘出支持音乐作品的层次结构。然而,尽管 SchA 具有强大的分析功能和改善音乐理解与生成的潜力,但计算机音乐界却很少使用它。这在很大程度上是由于以计算机可读格式提供的高质量数据太少。有了更多的申克数据,就有可能为机器学习模型注入对音乐结构更深入的理解,从而获得更 "人性化 "的结果。为了鼓励进一步研究申克式分析及其对音乐信息学和音乐生成的潜在益处,本文提出了三项主要贡献:1)一个新的、不断增长的申克分析数据集,这是迄今为止最大的非人类和计算机可读格式的数据集(超过 140 个节选);2)一个用于申克分析数据可视化和收集的新颖软件;3)一种新颖、灵活的申克分析异质边缘图数据结构表示法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信