Sample-Efficient Diffusion for Text-To-Speech Synthesis

Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q. Weinberger, Felix Wu
{"title":"Sample-Efficient Diffusion for Text-To-Speech Synthesis","authors":"Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q. Weinberger, Felix Wu","doi":"arxiv-2409.03717","DOIUrl":null,"url":null,"abstract":"This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm\nfor effective speech synthesis in modest data regimes through latent diffusion.\nIt is based on a novel diffusion architecture, that we call U-Audio Transformer\n(U-AT), that efficiently scales to long sequences and operates in the latent\nspace of a pre-trained audio autoencoder. Conditioned on character-aware\nlanguage model representations, SESD achieves impressive results despite\ntraining on less than 1k hours of speech - far less than current\nstate-of-the-art systems. In fact, it synthesizes more intelligible speech than\nthe state-of-the-art auto-regressive model, VALL-E, while using less than 2%\nthe training data.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm for effective speech synthesis in modest data regimes through latent diffusion. It is based on a novel diffusion architecture, that we call U-Audio Transformer (U-AT), that efficiently scales to long sequences and operates in the latent space of a pre-trained audio autoencoder. Conditioned on character-aware language model representations, SESD achieves impressive results despite training on less than 1k hours of speech - far less than current state-of-the-art systems. In fact, it synthesizes more intelligible speech than the state-of-the-art auto-regressive model, VALL-E, while using less than 2% the training data.
文本到语音合成的样本高效扩散
这项工作介绍了样本高效语音扩散(SESD),这是一种通过潜在扩散在适度数据环境中进行有效语音合成的算法。它基于一种新颖的扩散架构,我们称之为 U-Audio Transformer(U-AT),它能有效地扩展到长序列,并在预训练音频自动编码器的潜在空间中运行。SESD 以字符感知语言模型表示为条件,在不到 1K 小时的语音训练中取得了令人印象深刻的成果,远远低于目前最先进的系统。事实上,它合成的语音比最先进的自动回归模型 VALL-E 更清晰,而使用的训练数据却不到 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信