{"title":"Micromechanical properties of Al2O3–C refractories with aggregate/matrix interfacial layer by nanoindentation","authors":"Jiyuan Luo, Donghai Ding, Guoqing Xiao","doi":"10.1111/jace.20078","DOIUrl":null,"url":null,"abstract":"<p>The mechanical properties at microlevels are of important meaning for refractories while determining these values is of great challenges. In this contribution, a tailored grid nanoindentation test was employed to determine the micromechanical properties of low-carbon Al<sub>2</sub>O<sub>3</sub>–C refractories featuring reduced brittleness with in situ magnesium aluminate spinel/carbon nanotubes (MgAl<sub>2</sub>O<sub>4</sub>/CNTs) compound interfacial layer between the aggregate and matrix. The micromechanical properties, especially Young's modulus (<i>E</i>) and specific fracture energy (<i>G</i><sub>c</sub>) of the aggregate, matrix, and aggregate/matrix interface area of the refractories, were determined and compared. Statistical analysis on the nanoindentation results of the aggregate and matrix in the reference sample and the sample with interfacial layer shows high consistency, which reveals the high feasibility of the method. The median microspecific fracture energy of the aggregate/matrix interface increases from 63.67 J m<sup>−2</sup> of the reference group to 132.90 J m<sup>−2</sup> of the sample with the compound interfacial layer, which means that higher energy is needed for the initiation and propagation of microcracks within the interfacial layer, accounting for the brittleness reduction of the refractories. Consistent conclusions were drawn from the nanoindentation test at microlevels along with the macrolevel thermal shock test and wedge splitting test.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8474-8489"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20078","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties at microlevels are of important meaning for refractories while determining these values is of great challenges. In this contribution, a tailored grid nanoindentation test was employed to determine the micromechanical properties of low-carbon Al2O3–C refractories featuring reduced brittleness with in situ magnesium aluminate spinel/carbon nanotubes (MgAl2O4/CNTs) compound interfacial layer between the aggregate and matrix. The micromechanical properties, especially Young's modulus (E) and specific fracture energy (Gc) of the aggregate, matrix, and aggregate/matrix interface area of the refractories, were determined and compared. Statistical analysis on the nanoindentation results of the aggregate and matrix in the reference sample and the sample with interfacial layer shows high consistency, which reveals the high feasibility of the method. The median microspecific fracture energy of the aggregate/matrix interface increases from 63.67 J m−2 of the reference group to 132.90 J m−2 of the sample with the compound interfacial layer, which means that higher energy is needed for the initiation and propagation of microcracks within the interfacial layer, accounting for the brittleness reduction of the refractories. Consistent conclusions were drawn from the nanoindentation test at microlevels along with the macrolevel thermal shock test and wedge splitting test.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.