Generalized BKT Transitions and Persistent Order on the Lattice

Evan Berkowitz, Seth Buesing, Shi Chen, Aleksey Cherman, Srimoyee Sen
{"title":"Generalized BKT Transitions and Persistent Order on the Lattice","authors":"Evan Berkowitz, Seth Buesing, Shi Chen, Aleksey Cherman, Srimoyee Sen","doi":"arxiv-2409.00502","DOIUrl":null,"url":null,"abstract":"The BKT transition in low-dimensional systems with a $U(1)$ global symmetry\nseparates a gapless conformal phase from a trivially gapped, disordered phase,\nand is driven by vortex proliferation. Recent developments in modified Villain\ndiscretizations provide a class of lattice models which have a $\\mathbb{Z}_W$\nglobal symmetry that counts vortices mod W, mixed 't Hooft anomalies, and\npersistent order even at finite lattice spacing. While there is no\nfully-disordered phase (except in the original BKT limit $W=1$) there is still\na phase boundary which separates gapped ordered phases from gapless phases.\nI'll describe a numerical Monte Carlo exploration of these phenomena.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The BKT transition in low-dimensional systems with a $U(1)$ global symmetry separates a gapless conformal phase from a trivially gapped, disordered phase, and is driven by vortex proliferation. Recent developments in modified Villain discretizations provide a class of lattice models which have a $\mathbb{Z}_W$ global symmetry that counts vortices mod W, mixed 't Hooft anomalies, and persistent order even at finite lattice spacing. While there is no fully-disordered phase (except in the original BKT limit $W=1$) there is still a phase boundary which separates gapped ordered phases from gapless phases. I'll describe a numerical Monte Carlo exploration of these phenomena.
广义 BKT 晶体转变和晶格上的持久有序性
在具有$U(1)$全局对称性的低维系统中,BKT转变将无间隙共形相与三间隙无序相区分开来,并且是由涡旋增殖驱动的。修正的维兰分解法的最新发展提供了一类晶格模型,它们具有$\mathbb{Z}_W$全局对称性,可以计算涡旋模W、混合的't Hooft反常现象以及即使在有限晶格间距下也持续存在的有序性。虽然不存在完全无序的相位(除了在最初的 BKT 极限 $W=1$),但仍有一个相界将有序相位和无序相位分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信