Lattice artifacts of local fermion bilinears up to $\mathrm{O}(a^2)$

Nikolai Husung
{"title":"Lattice artifacts of local fermion bilinears up to $\\mathrm{O}(a^2)$","authors":"Nikolai Husung","doi":"arxiv-2409.00776","DOIUrl":null,"url":null,"abstract":"Recently the asymptotic lattice spacing dependence of spectral quantities in\nlattice QCD has been computed to $\\mathrm{O}(a^2)$ using Symanzik Effective\ntheory [1,2]. Here, we extend these results to matrix elements and correlators\nof local fermion bilinears, namely the scalar, pseudo-scalar, vector,\naxial-vector, and tensor. This resembles the typical current insertions for the\neffective Hamiltonian of electro-weak or BSM contributions, but is only a small\nfraction of the local fields typically considered. We again restrict\nconsiderations to lattice QCD actions with Wilson or Ginsparg-Wilson quarks and\nthus lattice formulations of QCD without flavour-changing interactions\nrealising at least\n$\\mathrm{SU}(N_\\mathrm{f})_\\mathrm{V}\\times\\mathrm{SU}(N_\\mathrm{b}|N_\\mathrm{b})_\\mathrm{V}$\nflavour symmetries for $N_\\mathrm{f}$ sea-quarks and $N_\\mathrm{b}$ quenched\nvalence-quarks respectively in the massless limit. Overall we find only few\ncases $\\hat{\\Gamma}$, which worsen the asymptotic lattice spacing dependence\n$a^n[2b_0\\bar{g}^2(1/a)]^{\\hat{\\Gamma}}$ compared to the classically expected\n$a^n$-scaling. Other than for trivial flavour quantum numbers, only the\naxial-vector and much milder the tensor may cause some problems at\n$\\mathrm{O}(a)$, strongly suggesting to use at least tree-level Symanzik\nimprovement of those local fields.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently the asymptotic lattice spacing dependence of spectral quantities in lattice QCD has been computed to $\mathrm{O}(a^2)$ using Symanzik Effective theory [1,2]. Here, we extend these results to matrix elements and correlators of local fermion bilinears, namely the scalar, pseudo-scalar, vector, axial-vector, and tensor. This resembles the typical current insertions for the effective Hamiltonian of electro-weak or BSM contributions, but is only a small fraction of the local fields typically considered. We again restrict considerations to lattice QCD actions with Wilson or Ginsparg-Wilson quarks and thus lattice formulations of QCD without flavour-changing interactions realising at least $\mathrm{SU}(N_\mathrm{f})_\mathrm{V}\times\mathrm{SU}(N_\mathrm{b}|N_\mathrm{b})_\mathrm{V}$ flavour symmetries for $N_\mathrm{f}$ sea-quarks and $N_\mathrm{b}$ quenched valence-quarks respectively in the massless limit. Overall we find only few cases $\hat{\Gamma}$, which worsen the asymptotic lattice spacing dependence $a^n[2b_0\bar{g}^2(1/a)]^{\hat{\Gamma}}$ compared to the classically expected $a^n$-scaling. Other than for trivial flavour quantum numbers, only the axial-vector and much milder the tensor may cause some problems at $\mathrm{O}(a)$, strongly suggesting to use at least tree-level Symanzik improvement of those local fields.
高达 $\mathrm{O}(a^2)$ 的局部费米子双线性的晶格伪影
最近,我们利用Symanzik有效理论[1,2]计算了QCD晶格中谱量的渐近晶格间距依赖性,其值为$\mathrm{O}(a^2)$。在这里,我们将这些结果扩展到局部费米子双线性的矩阵元素和相关子,即标量、伪标量、矢量、轴矢量和张量。这类似于弱电或 BSM 贡献的有效哈密顿的典型电流插入,但只是通常考虑的局部场的一小部分。我们再次把考虑限制在具有威尔逊或金斯帕-威尔逊夸克的 QCD 晶格作用上,因此,没有味道变化相互作用的 QCD 晶格形式至少能实现$1,000,000。(N_\mathrm{f})_\mathrm{V}\times\mathrm{SU}(N_\mathrm{b}|N_\mathrm{b})_\mathrm{V}$在无质量极限下分别为$N_\mathrm{f}$海夸克和$N_\mathrm{b}$淬火夸克实现至少$flavour对称性。总体而言,我们发现只有少数情况下$hat/{Gamma}$会恶化渐近晶格间距依赖性$a^n[2b_0\bar{g}^2(1/a)]^{\hat/{Gamma}}$,而不是经典预期的$a^n$缩放。除了微不足道的味道量子数之外,只有轴向矢量和温和得多的张量可能会在$\mathrm{O}(a)$引起一些问题,这强烈建议对这些局部场使用至少树级的 Symanzikimprovement。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信