{"title":"Alternatives to classical option pricing","authors":"W. Brent Lindquist, Svetlozar T. Rachev","doi":"10.1007/s10479-024-06213-z","DOIUrl":null,"url":null,"abstract":"<p>We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability <span>\\({\\mathbb{P}}\\)</span>. This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure <span>\\({\\mathbb{Q}}\\)</span>. The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don’t have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.</p>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"88 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10479-024-06213-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We develop two alternate approaches to arbitrage-free, market-complete, option pricing. The first approach requires no riskless asset. We develop the general framework for this approach and illustrate it with two specific examples. The second approach does use a riskless asset. However, by ensuring equality between real-world and risk-neutral price-change probabilities, the second approach enables the computation of risk-neutral option prices utilizing expectations under the natural world probability \({\mathbb{P}}\). This produces the same option prices as the classical approach in which prices are computed under the risk neutral measure \({\mathbb{Q}}\). The second approach and the two specific examples of the first approach require the introduction of new, marketable asset types, specifically perpetual derivatives of a stock, and a stock whose cumulative return (rather than price) is deflated. These two asset types are designed specifically for hedgers who don’t have access to sovereign riskless rates or may be hesitant to utilize interbank rates such as SOFR.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.