Communication Separations for Truthful Auctions: Breaking the Two-Player Barrier

Shiri Ron, Clayton Thomas, S. Matthew Weinberg, Qianfan Zhang
{"title":"Communication Separations for Truthful Auctions: Breaking the Two-Player Barrier","authors":"Shiri Ron, Clayton Thomas, S. Matthew Weinberg, Qianfan Zhang","doi":"arxiv-2409.08241","DOIUrl":null,"url":null,"abstract":"We study the communication complexity of truthful combinatorial auctions, and\nin particular the case where valuations are either subadditive or\nsingle-minded, which we denote with $\\mathsf{SubAdd}\\cup\\mathsf{SingleM}$. We\nshow that for three bidders with valuations in\n$\\mathsf{SubAdd}\\cup\\mathsf{SingleM}$, any deterministic truthful mechanism\nthat achieves at least a $0.366$-approximation requires $\\exp(m)$\ncommunication. In contrast, a natural extension of [Fei09] yields a\nnon-truthful $\\mathrm{poly}(m)$-communication protocol that achieves a\n$\\frac{1}{2}$-approximation, demonstrating a gap between the power of truthful\nmechanisms and non-truthful protocols for this problem. Our approach follows the taxation complexity framework laid out in [Dob16b],\nbut applies this framework in a setting not encompassed by the techniques used\nin past work. In particular, the only successful prior application of this\nframework uses a reduction to simultaneous protocols which only applies for two\nbidders [AKSW20], whereas our three-player lower bounds are stronger than what\ncan possibly arise from a two-player construction (since a trivial truthful\nauction guarantees a $\\frac{1}{2}$-approximation for two players).","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the communication complexity of truthful combinatorial auctions, and in particular the case where valuations are either subadditive or single-minded, which we denote with $\mathsf{SubAdd}\cup\mathsf{SingleM}$. We show that for three bidders with valuations in $\mathsf{SubAdd}\cup\mathsf{SingleM}$, any deterministic truthful mechanism that achieves at least a $0.366$-approximation requires $\exp(m)$ communication. In contrast, a natural extension of [Fei09] yields a non-truthful $\mathrm{poly}(m)$-communication protocol that achieves a $\frac{1}{2}$-approximation, demonstrating a gap between the power of truthful mechanisms and non-truthful protocols for this problem. Our approach follows the taxation complexity framework laid out in [Dob16b], but applies this framework in a setting not encompassed by the techniques used in past work. In particular, the only successful prior application of this framework uses a reduction to simultaneous protocols which only applies for two bidders [AKSW20], whereas our three-player lower bounds are stronger than what can possibly arise from a two-player construction (since a trivial truthful auction guarantees a $\frac{1}{2}$-approximation for two players).
真实拍卖的通信分离:打破双人障碍
我们研究了真实组合拍卖的通信复杂性,尤其是估值为次正数或单心的情况,我们用 $\mathsf{SubAdd}\cup\mathsf{SingleM}$ 表示这种情况。我们可以看到,对于估值在$\mathsf{SubAdd}\cup\mathsf{SingleM}$中的三个投标人,任何至少能达到$0.366$近似值的确定性真实机制都需要$\exp(m)$通信。与此相反,[Fei09] 的一个自然扩展产生了一个非真$\mathrm{poly}(m)$通信协议,它实现了$\frac{1}{2}$近似值,证明了真机制与非真协议在这个问题上的能力差距。我们的方法沿用了 [Dob16b] 中提出的税收复杂性框架,但将此框架应用于过去工作中使用的技术所未涵盖的环境中。特别是,这个框架之前唯一成功的应用是使用了对同时协议的还原,而这种还原只适用于两个竞标者[AKSW20],而我们的三人下界比两人构造可能产生的下界更强(因为一个微不足道的真实拍卖保证了两个竞标者的$\frac{1}{2}$近似值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信