Involution matrix loci and orbit harmonics

Moxuan J. Liu, Yichen Ma, Brendon Rhoades, Hai Zhu
{"title":"Involution matrix loci and orbit harmonics","authors":"Moxuan J. Liu, Yichen Ma, Brendon Rhoades, Hai Zhu","doi":"arxiv-2409.06175","DOIUrl":null,"url":null,"abstract":"Let $\\mathrm{Mat}_{n \\times n}(\\mathbb{C})$ be the affine space of $n \\times\nn$ complex matrices with coordinate ring $\\mathbb{C}[\\mathbf{x}_{n \\times n}]$.\nWe define graded quotients of $\\mathbb{C}[\\mathbf{x}_{n \\times n}]$ which carry\nan action of the symmetric group $\\mathfrak{S}_n$ by simultaneous permutation\nof rows and columns. These quotient rings are obtained by applying the orbit\nharmonics method to matrix loci corresponding to all involutions in\n$\\mathfrak{S}_n$ and the conjugacy classes of involutions in $\\mathfrak{S}_n$\nwith a given number of fixed points. In the case of perfect matchings on $\\{1,\n\\dots, n\\}$ with $n$ even, the Hilbert series of our quotient ring is related\nto Tracy-Widom distributions and its graded Frobenius image gives a refinement\nof the plethysm $s_{n/2}[s_2]$.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathrm{Mat}_{n \times n}(\mathbb{C})$ be the affine space of $n \times n$ complex matrices with coordinate ring $\mathbb{C}[\mathbf{x}_{n \times n}]$. We define graded quotients of $\mathbb{C}[\mathbf{x}_{n \times n}]$ which carry an action of the symmetric group $\mathfrak{S}_n$ by simultaneous permutation of rows and columns. These quotient rings are obtained by applying the orbit harmonics method to matrix loci corresponding to all involutions in $\mathfrak{S}_n$ and the conjugacy classes of involutions in $\mathfrak{S}_n$ with a given number of fixed points. In the case of perfect matchings on $\{1, \dots, n\}$ with $n$ even, the Hilbert series of our quotient ring is related to Tracy-Widom distributions and its graded Frobenius image gives a refinement of the plethysm $s_{n/2}[s_2]$.
卷积矩阵位置和轨道谐波
让 $\mathrm{Mat}_{n \times n}(\mathbb{C})$ 是坐标环为 $\mathbb{C}[\mathbf{x}_{n \times n}]$ 的 $n \timesn$ 复矩阵的仿射空间。我们定义了$mathbb{C}[\mathbf{x}_{n \times n}]$的分级商,它通过行列的同时置换来承载对称组$\mathfrak{S}_n$的作用。这些商环是通过对$\mathfrak{S}_n$中所有渐开线对应的矩阵位置以及$\mathfrak{S}_n$中具有给定定点数的渐开线共轭类应用轨道谐波方法得到的。在 $n$ 偶数的 $\{1,\dots, n\}$ 上的完全匹配的情况下,我们商环的希尔伯特数列与特雷西-维多姆分布相关,而它的分级弗罗本尼乌斯像给出了褶的细化 $s_{n/2}[s_2]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信