Deformed Homogeneous $(s,t)$-Rogers-Szegö Polynomials and the Deformed $(s,t)$-Exponential Operator e$_{s,t}(y{\rm T}_a D_{s,t},v)$

Ronald Orozco López
{"title":"Deformed Homogeneous $(s,t)$-Rogers-Szegö Polynomials and the Deformed $(s,t)$-Exponential Operator e$_{s,t}(y{\\rm T}_a D_{s,t},v)$","authors":"Ronald Orozco López","doi":"arxiv-2409.06878","DOIUrl":null,"url":null,"abstract":"This article introduces the deformed homogeneous $(s,t)$-Rogers-Szeg\\\"o\npolynomials h$_{n}(x,y;s,t,u,v)$. These polynomials are a generalization of the\nRogers-Szeg\\\"o polynomials and the $(p,q)$-Rogers-Szeg\\\"o polynomials defined\nby Jagannathan. By using the deformed $(s,t)$-exponential operator based on\noperator T$_{a}D_{s,t}$ we find identities involving the polynomials\nh$_{n}(x,y;s,t,u,v)$, together with generalizations of the Mehler and Rogers\nformulas. In addition, a generating function for the polynomials\nh$_{n}(x,y;s,t,u,v)$ is found employing the deformed\n$\\frac{\\varphi}{u}$-commuting operators. A representation of deformed\n$(s,t)$-exponential function as the limit of a sequence of deformed\n$(s,t)$-Rogers-Szeg\\\"o polynomials is obtained.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces the deformed homogeneous $(s,t)$-Rogers-Szeg\"o polynomials h$_{n}(x,y;s,t,u,v)$. These polynomials are a generalization of the Rogers-Szeg\"o polynomials and the $(p,q)$-Rogers-Szeg\"o polynomials defined by Jagannathan. By using the deformed $(s,t)$-exponential operator based on operator T$_{a}D_{s,t}$ we find identities involving the polynomials h$_{n}(x,y;s,t,u,v)$, together with generalizations of the Mehler and Rogers formulas. In addition, a generating function for the polynomials h$_{n}(x,y;s,t,u,v)$ is found employing the deformed $\frac{\varphi}{u}$-commuting operators. A representation of deformed $(s,t)$-exponential function as the limit of a sequence of deformed $(s,t)$-Rogers-Szeg\"o polynomials is obtained.
变形均质 $(s,t)$ 罗格斯-席格多项式与变形 $(s,t)$ 指数算子 e$_{s,t}(y{rm T}_a D_{s,t},v)$
本文介绍了变形同质 $(s,t)$ 罗杰斯-赛格多项式 h$_{n}(x,y;s,t,u,v)$。这些多项式是 Jagannathan 定义的罗杰斯-赛格多项式和 $(p,q)$ 罗杰斯-赛格多项式的广义化。通过使用基于运算符 T$_{a}D_{s,t}$ 的变形 $(s,t)$-指数运算符,我们发现了涉及多项式sh$_{n}(x,y;s,t,u,v)$ 的常量,以及梅勒公式和罗杰斯公式的广义化。此外,还利用变形$frac{\varphi}{u}$对换算子找到了多项式sh$_{n}(x,y;s,t,u,v)$的生成函数。得到了变形$(s,t)$-指数函数作为变形$(s,t)$-Rogers-Szeg\"o 多项式序列的极限的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信