Randomized Lower Bounds for Tarski Fixed Points in High Dimensions

Simina Brânzei, Reed Phillips, Nicholas Recker
{"title":"Randomized Lower Bounds for Tarski Fixed Points in High Dimensions","authors":"Simina Brânzei, Reed Phillips, Nicholas Recker","doi":"arxiv-2409.03751","DOIUrl":null,"url":null,"abstract":"The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that\nevery monotone function defined on a complete lattice has a fixed point. We\nanalyze the query complexity of finding such a fixed point on the\n$k$-dimensional grid of side length $n$ under the $\\leq$ relation.\nSpecifically, there is an unknown monotone function $f: \\{0,1,\\ldots, n-1\\}^k\n\\to \\{0,1,\\ldots, n-1\\}^k$ and an algorithm must query a vertex $v$ to learn\n$f(v)$. Our main result is a randomized lower bound of $\\Omega\\left( k + \\frac{k\n\\cdot \\log{n}}{\\log{k}} \\right)$ for the $k$-dimensional grid of side length\n$n$, which is nearly optimal in high dimensions when $k$ is large relative to\n$n$. As a corollary, we characterize the randomized and deterministic query\ncomplexity on the Boolean hypercube $\\{0,1\\}^k$ as $\\Theta(k)$.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Knaster-Tarski theorem, also known as Tarski's theorem, guarantees that every monotone function defined on a complete lattice has a fixed point. We analyze the query complexity of finding such a fixed point on the $k$-dimensional grid of side length $n$ under the $\leq$ relation. Specifically, there is an unknown monotone function $f: \{0,1,\ldots, n-1\}^k \to \{0,1,\ldots, n-1\}^k$ and an algorithm must query a vertex $v$ to learn $f(v)$. Our main result is a randomized lower bound of $\Omega\left( k + \frac{k \cdot \log{n}}{\log{k}} \right)$ for the $k$-dimensional grid of side length $n$, which is nearly optimal in high dimensions when $k$ is large relative to $n$. As a corollary, we characterize the randomized and deterministic query complexity on the Boolean hypercube $\{0,1\}^k$ as $\Theta(k)$.
高维塔尔斯基定点的随机下界
克纳斯特-塔尔斯基定理(Knaster-Tarski theorem)又称塔尔斯基定理,它保证了定义在完整网格上的每个单调函数都有一个定点。我们分析了在边长为 $n$ 的 $k$ 维网格上根据 $\leq$ 关系找到这样一个定点的查询复杂度:\具体来说,有一个未知的单调函数 $f:{0,1,\ldots, n-1\}^k\to \{0,1,\ldots,n-1\}^k$,算法必须查询一个顶点 $v$ 来学习 $f(v)$。我们的主要结果是为边长为 $n$ 的 $k$ 维网格提供了一个随机下限:$Omega\left( k + \frac{k\cdot \{log{n}}\{log{k}} \right)$,当 $k$ 相对于 $n$ 较大时,这个下限在高维中几乎是最优的。作为推论,我们将布尔超立方$\{0,1\}^k$上的随机和确定性查询复杂度表征为$\Theta(k)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信