SAHVAI-3D and 4D: A New, Automated Subarachnoid Hemorrhage Volumetric Artificial Intelligence (SAHVAI) Measurement Approach Using Non-Contrast Head CT Scans
Melina Wirtz, Saif Salman, Yujia Wei, Vishal Patel, Rohan Sharma, Vikash Gupta, Qiangqiang Gu, Benoit Dherin, Sanjana Reddy, Rabih Tawk, Bradley J Erickson, William David Freeman
{"title":"SAHVAI-3D and 4D: A New, Automated Subarachnoid Hemorrhage Volumetric Artificial Intelligence (SAHVAI) Measurement Approach Using Non-Contrast Head CT Scans","authors":"Melina Wirtz, Saif Salman, Yujia Wei, Vishal Patel, Rohan Sharma, Vikash Gupta, Qiangqiang Gu, Benoit Dherin, Sanjana Reddy, Rabih Tawk, Bradley J Erickson, William David Freeman","doi":"10.1101/2024.08.29.24312799","DOIUrl":null,"url":null,"abstract":"<strong>Objectives</strong> To automate subarachnoid hemorrhage volume (SAHV) calculation (<strong><em>SAHVAI-SAHV A</em></strong><em>rtificial</em> <strong><em>I</em></strong><em>ntelligence)</em> and create 3D volumetric images (SAHVAI-3D) using non-contrast head CT (NCCT) imaging data in aneurysmal subarachnoid hemorrhage (SAH) patients. We also defined SAHVAI-4D, representing SAHV over time. The aim was to compare automated SAHVAI volumes to manual SAHV methods and computation times, explore these imaging biomarkers’ potential in identifying at-risk brain regions for delayed cerebral ischemia (DCI), and explore potential insights in future neurotherapeutic interventions for SAH patient recovery.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.24312799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives To automate subarachnoid hemorrhage volume (SAHV) calculation (SAHVAI-SAHV ArtificialIntelligence) and create 3D volumetric images (SAHVAI-3D) using non-contrast head CT (NCCT) imaging data in aneurysmal subarachnoid hemorrhage (SAH) patients. We also defined SAHVAI-4D, representing SAHV over time. The aim was to compare automated SAHVAI volumes to manual SAHV methods and computation times, explore these imaging biomarkers’ potential in identifying at-risk brain regions for delayed cerebral ischemia (DCI), and explore potential insights in future neurotherapeutic interventions for SAH patient recovery.