Julyana Acevedo, Yiling Bi, Jessica Gee, Santoshkumar L. Khatwani
{"title":"Assessment of adeno-associated virus purity by capillary electrophoresis-based western","authors":"Julyana Acevedo, Yiling Bi, Jessica Gee, Santoshkumar L. Khatwani","doi":"10.1016/j.omtm.2024.101321","DOIUrl":null,"url":null,"abstract":"A rigorous analytical assessment of recombinant adeno-associated virus (rAAV)-based drug products is critical for their successful development as clinical candidates. It is especially important to ascertain high purity while simultaneously ensuring low levels of impurities in the final drug product. One approach to evaluate the purity of rAAV drug products is to determine the relative stoichiometry of the three viral proteins (VPs) that comprise an rAAV capsid, and the levels of impurities in the final drug product. Here we present two capillary electrophoresis-western (CE-western) assays for quantifying (1) the relative stoichiometry of VP using the anti-AAV B1 antibody, and (2) residual levels of a baculovirus protein impurity, GP64, using the anti-GP64 antibody. In each assay, various purified samples from diverse AAV serotypes were analyzed to determine their VP ratio or GP64 levels. The ratio of VP3/VP1 in rAAV samples was correlated with biological activity, and the clearance of GP64 from the manufacturing process was demonstrated. The results obtained from both assays were further supported by liquid chromatography-mass spectrometry analyses. Overall, we report that CE-western is a high-throughput platform that utilizes low sample volumes for a rapid, sensitive, and robust assessment of the identity, composition, and purity of rAAV drug products.","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101321","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A rigorous analytical assessment of recombinant adeno-associated virus (rAAV)-based drug products is critical for their successful development as clinical candidates. It is especially important to ascertain high purity while simultaneously ensuring low levels of impurities in the final drug product. One approach to evaluate the purity of rAAV drug products is to determine the relative stoichiometry of the three viral proteins (VPs) that comprise an rAAV capsid, and the levels of impurities in the final drug product. Here we present two capillary electrophoresis-western (CE-western) assays for quantifying (1) the relative stoichiometry of VP using the anti-AAV B1 antibody, and (2) residual levels of a baculovirus protein impurity, GP64, using the anti-GP64 antibody. In each assay, various purified samples from diverse AAV serotypes were analyzed to determine their VP ratio or GP64 levels. The ratio of VP3/VP1 in rAAV samples was correlated with biological activity, and the clearance of GP64 from the manufacturing process was demonstrated. The results obtained from both assays were further supported by liquid chromatography-mass spectrometry analyses. Overall, we report that CE-western is a high-throughput platform that utilizes low sample volumes for a rapid, sensitive, and robust assessment of the identity, composition, and purity of rAAV drug products.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.