Near-Optimal Mechanisms for Resource Allocation Without Monetary Transfers

Moise Blanchard, Patrick Jaillet
{"title":"Near-Optimal Mechanisms for Resource Allocation Without Monetary Transfers","authors":"Moise Blanchard, Patrick Jaillet","doi":"arxiv-2408.10066","DOIUrl":null,"url":null,"abstract":"We study the problem in which a central planner sequentially allocates a\nsingle resource to multiple strategic agents using their utility reports at\neach round, but without using any monetary transfers. We consider general agent\nutility distributions and two standard settings: a finite horizon $T$ and an\ninfinite horizon with $\\gamma$ discounts. We provide general tools to\ncharacterize the convergence rate between the optimal mechanism for the central\nplanner and the first-best allocation if true agent utilities were available.\nThis heavily depends on the utility distributions, yielding rates anywhere\nbetween $1/\\sqrt T$ and $1/T$ for the finite-horizon setting, and rates faster\nthan $\\sqrt{1-\\gamma}$, including exponential rates for the infinite-horizon\nsetting as agents are more patient $\\gamma\\to 1$. On the algorithmic side, we\ndesign mechanisms based on the promised-utility framework to achieve these\nrates and leverage structure on the utility distributions. Intuitively, the\nmore flexibility the central planner has to reward or penalize any agent while\nincurring little social welfare cost, the faster the convergence rate. In\nparticular, discrete utility distributions typically yield the slower rates\n$1/\\sqrt T$ and $\\sqrt{1-\\gamma}$, while smooth distributions with density\ntypically yield faster rates $1/T$ (up to logarithmic factors) and $1-\\gamma$.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem in which a central planner sequentially allocates a single resource to multiple strategic agents using their utility reports at each round, but without using any monetary transfers. We consider general agent utility distributions and two standard settings: a finite horizon $T$ and an infinite horizon with $\gamma$ discounts. We provide general tools to characterize the convergence rate between the optimal mechanism for the central planner and the first-best allocation if true agent utilities were available. This heavily depends on the utility distributions, yielding rates anywhere between $1/\sqrt T$ and $1/T$ for the finite-horizon setting, and rates faster than $\sqrt{1-\gamma}$, including exponential rates for the infinite-horizon setting as agents are more patient $\gamma\to 1$. On the algorithmic side, we design mechanisms based on the promised-utility framework to achieve these rates and leverage structure on the utility distributions. Intuitively, the more flexibility the central planner has to reward or penalize any agent while incurring little social welfare cost, the faster the convergence rate. In particular, discrete utility distributions typically yield the slower rates $1/\sqrt T$ and $\sqrt{1-\gamma}$, while smooth distributions with density typically yield faster rates $1/T$ (up to logarithmic factors) and $1-\gamma$.
无货币转移的资源分配近优机制
我们研究了这样一个问题:中央计划者利用多个战略代理人每轮的效用报告,按顺序将单一资源分配给他们,但不使用任何货币转移。我们考虑了一般代理效用分布和两种标准设置:有限视界 $T$ 和具有 $\gamma$ 折扣的无限视界。我们提供了一般工具来描述在真实代理人效用可用的情况下,中央计划者的最优机制与第一最优分配之间的收敛速度。这在很大程度上取决于效用分布,在有限地平线设置下,收敛速度介于$1/sqrt T$和$1/T$之间,而在无限地平线设置下,收敛速度快于$\sqrt{1-\gamma}$,包括指数收敛速度,因为代理人更有耐心$\gamma\to 1$。在算法方面,我们设计了基于承诺效用框架的机制,以实现效用和效用分布上的杠杆结构。直观地说,中央规划者奖励或惩罚任何代理人的灵活性越大,而产生的社会福利成本越小,收敛速度就越快。具体而言,离散效用分布通常会产生较慢的收敛率$1/\sqrt T$和$\sqrt{1-\gamma}$,而具有密度的平滑分布通常会产生较快的收敛率$1/T$(达到对数因子)和$1-\gamma$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信