Quantum Volunteer's Dilemma

Dax Enshan Koh, Kaavya Kumar, Siong Thye Goh
{"title":"Quantum Volunteer's Dilemma","authors":"Dax Enshan Koh, Kaavya Kumar, Siong Thye Goh","doi":"arxiv-2409.05708","DOIUrl":null,"url":null,"abstract":"The volunteer's dilemma is a well-known game in game theory that models the\nconflict players face when deciding whether to volunteer for a collective\nbenefit, knowing that volunteering incurs a personal cost. In this work, we\nintroduce a quantum variant of the classical volunteer's dilemma, generalizing\nit by allowing players to utilize quantum strategies. Employing the\nEisert-Wilkens-Lewenstein quantization framework, we analyze a multiplayer\nquantum volunteer's dilemma scenario with an arbitrary number of players, where\nthe cost of volunteering is shared equally among the volunteers. We derive\nanalytical expressions for the players' expected payoffs and demonstrate the\nquantum game's advantage over the classical game. In particular, we prove that\nthe quantum volunteer's dilemma possesses symmetric Nash equilibria with larger\nexpected payoffs compared to the unique symmetric Nash equilibrium of the\nclassical game, wherein players use mixed strategies. Furthermore, we show that\nthe quantum Nash equilibria we identify are Pareto optimal. Our findings reveal\ndistinct dynamics in volunteer's dilemma scenarios when players adhere to\nquantum rules, underscoring a strategic advantage of decision-making in quantum\nsettings.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The volunteer's dilemma is a well-known game in game theory that models the conflict players face when deciding whether to volunteer for a collective benefit, knowing that volunteering incurs a personal cost. In this work, we introduce a quantum variant of the classical volunteer's dilemma, generalizing it by allowing players to utilize quantum strategies. Employing the Eisert-Wilkens-Lewenstein quantization framework, we analyze a multiplayer quantum volunteer's dilemma scenario with an arbitrary number of players, where the cost of volunteering is shared equally among the volunteers. We derive analytical expressions for the players' expected payoffs and demonstrate the quantum game's advantage over the classical game. In particular, we prove that the quantum volunteer's dilemma possesses symmetric Nash equilibria with larger expected payoffs compared to the unique symmetric Nash equilibrium of the classical game, wherein players use mixed strategies. Furthermore, we show that the quantum Nash equilibria we identify are Pareto optimal. Our findings reveal distinct dynamics in volunteer's dilemma scenarios when players adhere to quantum rules, underscoring a strategic advantage of decision-making in quantum settings.
量子志愿者的困境
志愿者困境是博弈论中一个著名的博弈,它模拟了玩家在决定是否为集体利益志愿服务时所面临的冲突,因为他们知道志愿服务需要付出个人代价。在这项研究中,我们引入了经典志愿者困境的量子变体,通过允许博弈者使用量子策略对其进行概括。我们采用艾瑟特-威尔肯斯-莱文斯坦量子化框架,分析了一个多人量子志愿者困境场景,该场景有任意数量的参与者,志愿者的志愿服务成本在志愿者之间均摊。我们推导出了玩家预期收益的分析表达式,并证明了量子博弈相对于经典博弈的优势。特别是,我们证明了量子志愿者困境与经典博弈中唯一的对称纳什均衡相比,具有较大的预期收益。此外,我们还证明了我们确定的量子纳什均衡是帕累托最优的。我们的发现揭示了当博弈者遵守量子规则时,志愿者两难情景中的不同动态,强调了量子环境中决策的战略优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信