Local times of self-intersection and sample path properties of Volterra Gaussian processes

Olga Izyumtseva, Wasiur R. KhudaBukhsh
{"title":"Local times of self-intersection and sample path properties of Volterra Gaussian processes","authors":"Olga Izyumtseva, Wasiur R. KhudaBukhsh","doi":"arxiv-2409.04377","DOIUrl":null,"url":null,"abstract":"We study a Volterra Gaussian process of the form\n$X(t)=\\int^t_0K(t,s)d{W(s)},$ where $W$ is a Wiener process and $K$ is a\ncontinuous kernel. In dimension one, we prove a law of the iterated logarithm,\ndiscuss the existence of local times and verify a continuous dependence between\nthe local time and the kernel that generates the process. Furthermore, we prove\nthe existence of the Rosen renormalized self-intersection local times for a\nplanar Gaussian Volterra process.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a Volterra Gaussian process of the form $X(t)=\int^t_0K(t,s)d{W(s)},$ where $W$ is a Wiener process and $K$ is a continuous kernel. In dimension one, we prove a law of the iterated logarithm, discuss the existence of local times and verify a continuous dependence between the local time and the kernel that generates the process. Furthermore, we prove the existence of the Rosen renormalized self-intersection local times for a planar Gaussian Volterra process.
Volterra 高斯过程的局部自交时间和样本路径特性
我们研究了形式为$X(t)=\int^t_0K(t,s)d{W(s)}$的沃尔特拉高斯过程,其中$W$是维纳过程,$K$是连续核。在维度一中,我们证明了迭代对数定律,讨论了局部时间的存在,并验证了局部时间与产生过程的核之间的连续依赖关系。此外,我们还证明了平面高斯 Volterra 过程的罗森归一化自交局部时间的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信