Robust Elicitable Functionals

Kathleen E. Miao, Silvana M. Pesenti
{"title":"Robust Elicitable Functionals","authors":"Kathleen E. Miao, Silvana M. Pesenti","doi":"arxiv-2409.04412","DOIUrl":null,"url":null,"abstract":"Elicitable functionals and (strict) consistent scoring functions are of\ninterest due to their utility of determining (uniquely) optimal forecasts, and\nthus the ability to effectively backtest predictions. However, in practice,\nassuming that a distribution is correctly specified is too strong a belief to\nreliably hold. To remediate this, we incorporate a notion of statistical\nrobustness into the framework of elicitable functionals, meaning that our\nrobust functional accounts for \"small\" misspecifications of a baseline\ndistribution. Specifically, we propose a robustified version of elicitable\nfunctionals by using the Kullback-Leibler divergence to quantify potential\nmisspecifications from a baseline distribution. We show that the robust\nelicitable functionals admit unique solutions lying at the boundary of the\nuncertainty region. Since every elicitable functional possesses infinitely many\nscoring functions, we propose the class of b-homogeneous strictly consistent\nscoring functions, for which the robust functionals maintain desirable\nstatistical properties. We show the applicability of the REF in two examples:\nin the reinsurance setting and in robust regression problems.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elicitable functionals and (strict) consistent scoring functions are of interest due to their utility of determining (uniquely) optimal forecasts, and thus the ability to effectively backtest predictions. However, in practice, assuming that a distribution is correctly specified is too strong a belief to reliably hold. To remediate this, we incorporate a notion of statistical robustness into the framework of elicitable functionals, meaning that our robust functional accounts for "small" misspecifications of a baseline distribution. Specifically, we propose a robustified version of elicitable functionals by using the Kullback-Leibler divergence to quantify potential misspecifications from a baseline distribution. We show that the robust elicitable functionals admit unique solutions lying at the boundary of the uncertainty region. Since every elicitable functional possesses infinitely many scoring functions, we propose the class of b-homogeneous strictly consistent scoring functions, for which the robust functionals maintain desirable statistical properties. We show the applicability of the REF in two examples: in the reinsurance setting and in robust regression problems.
稳健的可激发函数
可激发函数和(严格的)一致性评分函数因其确定(唯一的)最优预测的效用而备受关注,并因此能够有效地回测预测。然而,在实践中,假设一个分布是正确指定的信念过于强烈,难以可靠地坚持。为了解决这个问题,我们将统计稳健性的概念纳入了可激发函数的框架中,这意味着我们的稳健函数可以解释对基底分布的 "微小 "误指定。具体来说,我们使用库尔巴克-莱伯勒发散(Kullback-Leibler divergence)来量化基线分布的潜在误差,从而提出了可激发函数的稳健版本。我们证明,稳健可激发函数在不确定性区域的边界上有唯一的解。由于每个可激发函数都有无限多的评分函数,我们提出了一类 b-同质严格一致性评分函数,对于这类函数,鲁棒函数保持了理想的统计特性。我们在两个例子中展示了 REF 的适用性:再保险环境和稳健回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信