Recursive Nested Filtering for Efficient Amortized Bayesian Experimental Design

Sahel Iqbal, Hany Abdulsamad, Sara Pérez-Vieites, Simo Särkkä, Adrien Corenflos
{"title":"Recursive Nested Filtering for Efficient Amortized Bayesian Experimental Design","authors":"Sahel Iqbal, Hany Abdulsamad, Sara Pérez-Vieites, Simo Särkkä, Adrien Corenflos","doi":"arxiv-2409.05354","DOIUrl":null,"url":null,"abstract":"This paper introduces the Inside-Out Nested Particle Filter (IO-NPF), a\nnovel, fully recursive, algorithm for amortized sequential Bayesian\nexperimental design in the non-exchangeable setting. We frame policy\noptimization as maximum likelihood estimation in a non-Markovian state-space\nmodel, achieving (at most) $\\mathcal{O}(T^2)$ computational complexity in the\nnumber of experiments. We provide theoretical convergence guarantees and\nintroduce a backward sampling algorithm to reduce trajectory degeneracy. IO-NPF\noffers a practical, extensible, and provably consistent approach to sequential\nBayesian experimental design, demonstrating improved efficiency over existing\nmethods.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the Inside-Out Nested Particle Filter (IO-NPF), a novel, fully recursive, algorithm for amortized sequential Bayesian experimental design in the non-exchangeable setting. We frame policy optimization as maximum likelihood estimation in a non-Markovian state-space model, achieving (at most) $\mathcal{O}(T^2)$ computational complexity in the number of experiments. We provide theoretical convergence guarantees and introduce a backward sampling algorithm to reduce trajectory degeneracy. IO-NPF offers a practical, extensible, and provably consistent approach to sequential Bayesian experimental design, demonstrating improved efficiency over existing methods.
高效摊销贝叶斯实验设计的递归嵌套过滤法
本文介绍了嵌套粒子过滤器(Inside-Out Nested Particle Filter,IO-NPF),这是一种在不可交换设置中用于摊销顺序贝叶斯实验设计的完全递归的高级算法。我们将策略优化设定为非马尔可夫状态空间模型中的最大似然估计,在实验次数上实现了(最多)$\mathcal{O}(T^2)$的计算复杂度。我们提供了理论上的收敛保证,并引入了一种后向采样算法来减少轨迹退化。IO-NPF 为连续贝叶斯实验设计提供了一种实用、可扩展和可证明一致的方法,与现有方法相比提高了效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信