A Unified Framework for Cluster Methods with Tensor Networks

Erdong Guo, David Draper
{"title":"A Unified Framework for Cluster Methods with Tensor Networks","authors":"Erdong Guo, David Draper","doi":"arxiv-2409.04729","DOIUrl":null,"url":null,"abstract":"Markov Chain Monte Carlo (MCMC), and Tensor Networks (TN) are two powerful\nframeworks for numerically investigating many-body systems, each offering\ndistinct advantages. MCMC, with its flexibility and theoretical consistency, is\nwell-suited for simulating arbitrary systems by sampling. TN, on the other\nhand, provides a powerful tensor-based language for capturing the entanglement\nproperties intrinsic to many-body systems, offering a universal representation\nof these systems. In this work, we leverage the computational strengths of TN\nto design a versatile cluster MCMC sampler. Specifically, we propose a general\nframework for constructing tensor-based cluster MCMC methods, enabling\narbitrary cluster updates by utilizing TNs to compute the distributions\nrequired in the MCMC sampler. Our framework unifies several existing cluster\nalgorithms as special cases and allows for natural extensions. We demonstrate\nour method by applying it to the simulation of the two-dimensional\nEdwards-Anderson Model and the three-dimensional Ising Model. This work is\ndedicated to the memory of Prof. David Draper.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Markov Chain Monte Carlo (MCMC), and Tensor Networks (TN) are two powerful frameworks for numerically investigating many-body systems, each offering distinct advantages. MCMC, with its flexibility and theoretical consistency, is well-suited for simulating arbitrary systems by sampling. TN, on the other hand, provides a powerful tensor-based language for capturing the entanglement properties intrinsic to many-body systems, offering a universal representation of these systems. In this work, we leverage the computational strengths of TN to design a versatile cluster MCMC sampler. Specifically, we propose a general framework for constructing tensor-based cluster MCMC methods, enabling arbitrary cluster updates by utilizing TNs to compute the distributions required in the MCMC sampler. Our framework unifies several existing cluster algorithms as special cases and allows for natural extensions. We demonstrate our method by applying it to the simulation of the two-dimensional Edwards-Anderson Model and the three-dimensional Ising Model. This work is dedicated to the memory of Prof. David Draper.
张量网络集群方法的统一框架
马尔可夫链蒙特卡罗(MCMC)和张量网络(TN)是对多体系统进行数值研究的两个强大框架,各自具有不同的优势。MCMC 具有灵活性和理论一致性,非常适合通过采样模拟任意系统。而 TN 则提供了一种基于张量的强大语言,用于捕捉多体系统固有的纠缠特性,为这些系统提供了一种通用的表示方法。在这项工作中,我们利用 TN 的计算优势设计了一种多功能集群 MCMC 采样器。具体来说,我们提出了一种构建基于张量的聚类 MCMC 方法的通用框架,通过利用 TN 计算 MCMC 采样器中所需的分布,实现任意的聚类更新。我们的框架将现有的几种聚类算法统一为特例,并允许自然扩展。我们将此方法应用于二维爱德华兹-安德森模型和三维伊辛模型的仿真,从而展示了我们的方法。谨以此文悼念戴维-德雷珀(David Draper)教授。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信