Review of Recent Advances in Gaussian Process Regression Methods

Chenyi Lyu, Xingchi Liu, Lyudmila Mihaylova
{"title":"Review of Recent Advances in Gaussian Process Regression Methods","authors":"Chenyi Lyu, Xingchi Liu, Lyudmila Mihaylova","doi":"arxiv-2409.08112","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) methods have been widely studied recently, especially\nfor large-scale systems with big data and even more extreme cases when data is\nsparse. Key advantages of these methods consist in: 1) the ability to provide\ninherent ways to assess the impact of uncertainties (especially in the data,\nand environment) on the solutions, 2) have efficient factorisation based\nimplementations and 3) can be implemented easily in distributed manners and\nhence provide scalable solutions. This paper reviews the recently developed key\nfactorised GP methods such as the hierarchical off-diagonal low-rank\napproximation methods and GP with Kronecker structures. An example illustrates\nthe performance of these methods with respect to accuracy and computational\ncomplexity.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaussian process (GP) methods have been widely studied recently, especially for large-scale systems with big data and even more extreme cases when data is sparse. Key advantages of these methods consist in: 1) the ability to provide inherent ways to assess the impact of uncertainties (especially in the data, and environment) on the solutions, 2) have efficient factorisation based implementations and 3) can be implemented easily in distributed manners and hence provide scalable solutions. This paper reviews the recently developed key factorised GP methods such as the hierarchical off-diagonal low-rank approximation methods and GP with Kronecker structures. An example illustrates the performance of these methods with respect to accuracy and computational complexity.
高斯过程回归方法最新进展综述
高斯过程(GP)方法最近得到了广泛的研究,尤其是针对具有海量数据的大型系统,以及数据稀少的更极端情况。这些方法的主要优势在于1) 能够提供评估不确定性(尤其是数据和环境中的不确定性)对解决方案影响的固有方法;2) 具有高效的基于因式分解的实现方法;3) 可以轻松地以分布式方式实现,从而提供可扩展的解决方案。本文回顾了最近开发的关键因子化 GP 方法,如分层离对角线低秩逼近方法和具有 Kronecker 结构的 GP。一个例子说明了这些方法在精度和计算复杂度方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信