Priors from Envisioned Posterior Judgments: A Novel Elicitation Approach With Application to Bayesian Clinical Trials

Yongdong Ouyang, Janice J Eng, Denghuang Zhan, Hubert Wong
{"title":"Priors from Envisioned Posterior Judgments: A Novel Elicitation Approach With Application to Bayesian Clinical Trials","authors":"Yongdong Ouyang, Janice J Eng, Denghuang Zhan, Hubert Wong","doi":"arxiv-2409.05271","DOIUrl":null,"url":null,"abstract":"The uptake of formalized prior elicitation from experts in Bayesian clinical\ntrials has been limited, largely due to the challenges associated with complex\nstatistical modeling, the lack of practical tools, and the cognitive burden on\nexperts required to quantify their uncertainty using probabilistic language.\nAdditionally, existing methods do not address prior-posterior coherence, i.e.,\ndoes the posterior distribution, obtained mathematically from combining the\nestimated prior with the trial data, reflect the expert's actual posterior\nbeliefs? We propose a new elicitation approach that seeks to ensure\nprior-posterior coherence and reduce the expert's cognitive burden. This is\nachieved by eliciting responses about the expert's envisioned posterior\njudgments under various potential data outcomes and inferring the prior\ndistribution by minimizing the discrepancies between these responses and the\nexpected responses obtained from the posterior distribution. The feasibility\nand potential value of the new approach are illustrated through an application\nto a real trial currently underway.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"170 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The uptake of formalized prior elicitation from experts in Bayesian clinical trials has been limited, largely due to the challenges associated with complex statistical modeling, the lack of practical tools, and the cognitive burden on experts required to quantify their uncertainty using probabilistic language. Additionally, existing methods do not address prior-posterior coherence, i.e., does the posterior distribution, obtained mathematically from combining the estimated prior with the trial data, reflect the expert's actual posterior beliefs? We propose a new elicitation approach that seeks to ensure prior-posterior coherence and reduce the expert's cognitive burden. This is achieved by eliciting responses about the expert's envisioned posterior judgments under various potential data outcomes and inferring the prior distribution by minimizing the discrepancies between these responses and the expected responses obtained from the posterior distribution. The feasibility and potential value of the new approach are illustrated through an application to a real trial currently underway.
来自设想的后验判断的先验:应用于贝叶斯临床试验的新颖诱导方法
在贝叶斯临床试验中,向专家正式征询先验值的做法一直受到限制,这主要是由于复杂的统计建模所带来的挑战、实用工具的缺乏以及专家使用概率语言量化其不确定性所带来的认知负担。此外,现有方法并未解决先验-后验一致性问题,即通过将估计的先验值与试验数据相结合而得到的后验分布是否反映了专家的实际后验信念?我们提出了一种新的诱导方法,旨在确保先验-后验一致性并减轻专家的认知负担。具体做法是:在各种可能的数据结果下,诱导专家回答其设想的后验判断,并通过最小化这些回答与从后验分布中得到的预期回答之间的差异来推断前验分布。通过对目前正在进行的一项实际试验的应用,说明了这种新方法的可行性和潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信