Integrating Multiple Data Sources with Interactions in Multi-Omics Using Cooperative Learning

Matteo D'Alessandro, Theophilus Quachie Asenso, Manuela Zucknick
{"title":"Integrating Multiple Data Sources with Interactions in Multi-Omics Using Cooperative Learning","authors":"Matteo D'Alessandro, Theophilus Quachie Asenso, Manuela Zucknick","doi":"arxiv-2409.07125","DOIUrl":null,"url":null,"abstract":"Modeling with multi-omics data presents multiple challenges such as the\nhigh-dimensionality of the problem ($p \\gg n$), the presence of interactions\nbetween features, and the need for integration between multiple data sources.\nWe establish an interaction model that allows for the inclusion of multiple\nsources of data from the integration of two existing methods, pliable lasso and\ncooperative learning. The integrated model is tested both on simulation studies\nand on real multi-omics datasets for predicting labor onset and cancer\ntreatment response. The results show that the model is effective in modeling\nmulti-source data in various scenarios where interactions are present, both in\nterms of prediction performance and selection of relevant variables.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"195 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling with multi-omics data presents multiple challenges such as the high-dimensionality of the problem ($p \gg n$), the presence of interactions between features, and the need for integration between multiple data sources. We establish an interaction model that allows for the inclusion of multiple sources of data from the integration of two existing methods, pliable lasso and cooperative learning. The integrated model is tested both on simulation studies and on real multi-omics datasets for predicting labor onset and cancer treatment response. The results show that the model is effective in modeling multi-source data in various scenarios where interactions are present, both in terms of prediction performance and selection of relevant variables.
利用合作学习将多数据源与多图像中的互动整合在一起
使用多组学数据建模面临着多重挑战,例如问题的高维性($p \gg n$)、特征之间存在交互作用以及需要整合多个数据源。我们在模拟研究和真实的多组学数据集上测试了这一集成模型,以预测临产和癌症治疗反应。结果表明,该模型能在各种存在交互作用的情况下对多源数据进行有效建模,无论是在预测性能方面还是在选择相关变量方面都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信