Community detection in multi-layer networks by regularized debiased spectral clustering

Huan Qing
{"title":"Community detection in multi-layer networks by regularized debiased spectral clustering","authors":"Huan Qing","doi":"arxiv-2409.07956","DOIUrl":null,"url":null,"abstract":"Community detection is a crucial problem in the analysis of multi-layer\nnetworks. In this work, we introduce a new method, called regularized debiased\nsum of squared adjacency matrices (RDSoS), to detect latent communities in\nmulti-layer networks. RDSoS is developed based on a novel regularized Laplacian\nmatrix that regularizes the debiased sum of squared adjacency matrices. In\ncontrast, the classical regularized Laplacian matrix typically regularizes the\nadjacency matrix of a single-layer network. Therefore, at a high level, our\nregularized Laplacian matrix extends the classical regularized Laplacian matrix\nto multi-layer networks. We establish the consistency property of RDSoS under\nthe multi-layer stochastic block model (MLSBM) and further extend RDSoS and its\ntheoretical results to the degree-corrected version of the MLSBM model. The\neffectiveness of the proposed methods is evaluated and demonstrated through\nsynthetic and real datasets.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Community detection is a crucial problem in the analysis of multi-layer networks. In this work, we introduce a new method, called regularized debiased sum of squared adjacency matrices (RDSoS), to detect latent communities in multi-layer networks. RDSoS is developed based on a novel regularized Laplacian matrix that regularizes the debiased sum of squared adjacency matrices. In contrast, the classical regularized Laplacian matrix typically regularizes the adjacency matrix of a single-layer network. Therefore, at a high level, our regularized Laplacian matrix extends the classical regularized Laplacian matrix to multi-layer networks. We establish the consistency property of RDSoS under the multi-layer stochastic block model (MLSBM) and further extend RDSoS and its theoretical results to the degree-corrected version of the MLSBM model. The effectiveness of the proposed methods is evaluated and demonstrated through synthetic and real datasets.
通过正则化去偏谱聚类检测多层网络中的群落
社群检测是多层网络分析中的一个关键问题。在这项工作中,我们引入了一种名为正则化邻接矩阵平方和(RDSoS)的新方法,用于检测多层网络中的潜在群落。RDSoS 是基于一种新颖的正则化拉普拉斯矩阵开发的,该矩阵对邻接矩阵平方的去偏和进行了正则化处理。与此相反,经典的正则化拉普拉斯矩阵通常正则化单层网络的邻接矩阵。因此,在高层次上,我们的正则化拉普拉斯矩阵将经典正则化拉普拉斯矩阵扩展到了多层网络。我们建立了 RDSoS 在多层随机块模型(MLSBM)下的一致性属性,并进一步将 RDSoS 及其理论结果扩展到多层随机块模型的度校正版本。通过合成数据集和真实数据集评估和证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信