Spatial Deep Convolutional Neural Networks

Qi Wang, Paul A. Parker, Robert B. Lund
{"title":"Spatial Deep Convolutional Neural Networks","authors":"Qi Wang, Paul A. Parker, Robert B. Lund","doi":"arxiv-2409.07559","DOIUrl":null,"url":null,"abstract":"Spatial prediction problems often use Gaussian process models, which can be\ncomputationally burdensome in high dimensions. Specification of an appropriate\ncovariance function for the model can be challenging when complex\nnon-stationarities exist. Recent work has shown that pre-computed spatial basis\nfunctions and a feed-forward neural network can capture complex spatial\ndependence structures while remaining computationally efficient. This paper\nbuilds on this literature by tailoring spatial basis functions for use in\nconvolutional neural networks. Through both simulated and real data, we\ndemonstrate that this approach yields more accurate spatial predictions than\nexisting methods. Uncertainty quantification is also considered.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.
空间深度卷积神经网络
空间预测问题通常使用高斯过程模型,而高斯过程模型在高维度下会成为计算上的负担。当存在复杂的非稳态关系时,为模型指定一个合适的协方差函数可能会很有挑战性。最近的研究表明,预先计算的空间基函数和前馈神经网络可以捕捉复杂的空间依赖性结构,同时保持计算效率。本文在这些文献的基础上,对空间基函数进行了定制,以用于卷积神经网络。通过模拟和真实数据,我们证明了这种方法比现有方法能产生更准确的空间预测。我们还考虑了不确定性量化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信