Extended-support beta regression for $[0, 1]$ responses

Ioannis Kosmidis, Achim Zeileis
{"title":"Extended-support beta regression for $[0, 1]$ responses","authors":"Ioannis Kosmidis, Achim Zeileis","doi":"arxiv-2409.07233","DOIUrl":null,"url":null,"abstract":"We introduce the XBX regression model, a continuous mixture of\nextended-support beta regressions for modeling bounded responses with or\nwithout boundary observations. The core building block of the new model is the\nextended-support beta distribution, which is a censored version of a\nfour-parameter beta distribution with the same exceedance on the left and right\nof $(0, 1)$. Hence, XBX regression is a direct extension of beta regression. We\nprove that both beta regression with dispersion effects and heteroscedastic\nnormal regression with censoring at both $0$ and $1$ -- known as the\nheteroscedastic two-limit tobit model in the econometrics literature -- are\nspecial cases of the extended-support beta regression model, depending on\nwhether a single extra parameter is zero or infinity, respectively. To overcome\nidentifiability issues that may arise in estimating the extra parameter due to\nthe similarity of the beta and normal distribution for certain parameter\nsettings, we assume that the additional parameter has an exponential\ndistribution with an unknown mean. The associated marginal likelihood can be\nconveniently and accurately approximated using a Gauss-Laguerre quadrature\nrule, resulting in efficient estimation and inference procedures. The new model\nis used to analyze investment decisions in a behavioral economics experiment,\nwhere the occurrence and extent of loss aversion is of interest. In contrast to\nstandard approaches, XBX regression can simultaneously capture the probability\nof rational behavior as well as the mean amount of loss aversion. Moreover, the\neffectiveness of the new model is illustrated through extensive numerical\ncomparisons with alternative models.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the XBX regression model, a continuous mixture of extended-support beta regressions for modeling bounded responses with or without boundary observations. The core building block of the new model is the extended-support beta distribution, which is a censored version of a four-parameter beta distribution with the same exceedance on the left and right of $(0, 1)$. Hence, XBX regression is a direct extension of beta regression. We prove that both beta regression with dispersion effects and heteroscedastic normal regression with censoring at both $0$ and $1$ -- known as the heteroscedastic two-limit tobit model in the econometrics literature -- are special cases of the extended-support beta regression model, depending on whether a single extra parameter is zero or infinity, respectively. To overcome identifiability issues that may arise in estimating the extra parameter due to the similarity of the beta and normal distribution for certain parameter settings, we assume that the additional parameter has an exponential distribution with an unknown mean. The associated marginal likelihood can be conveniently and accurately approximated using a Gauss-Laguerre quadrature rule, resulting in efficient estimation and inference procedures. The new model is used to analyze investment decisions in a behavioral economics experiment, where the occurrence and extent of loss aversion is of interest. In contrast to standard approaches, XBX regression can simultaneously capture the probability of rational behavior as well as the mean amount of loss aversion. Moreover, the effectiveness of the new model is illustrated through extensive numerical comparisons with alternative models.
针对 $[0, 1]$ 响应的扩展支持贝塔回归
我们引入了 XBX 回归模型,这是一种扩展支持贝塔回归的连续混合物,用于对有或无边界观测值的有界响应建模。新模型的核心构件是扩展支持贝塔分布,它是四参数贝塔分布的删减版本,在 $(0, 1)$ 左侧和右侧具有相同的超出度。因此,XBX 回归是贝塔回归的直接扩展。我们证明,根据单个额外参数是零还是无穷大,具有离散效应的贝塔回归和在 $0$ 和 $1$ 处均有删减的异塞尔德正态回归(计量经济学文献中称为异塞尔德两限 tobit 模型)都是扩展支持贝塔回归模型的特例。在某些参数设置下,贝塔分布和正态分布相似,为了克服估计额外参数时可能出现的可识别性问题,我们假设额外参数具有未知均值的指数分布。利用高斯-拉盖尔四则运算法则,可以方便、准确地逼近相关的边际似然值,从而实现高效的估计和推理过程。新模型用于分析行为经济学实验中的投资决策,其中损失规避的发生和程度是令人感兴趣的。与标准方法相比,XBX 回归能同时捕捉理性行为的概率和损失规避的平均值。此外,新模型的有效性还通过与其他模型的大量数值比较得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信