Trace dual of additive cyclic codes over finite fields

Gyanendra K. Verma, R. K. Sharma
{"title":"Trace dual of additive cyclic codes over finite fields","authors":"Gyanendra K. Verma, R. K. Sharma","doi":"10.1007/s12095-024-00741-y","DOIUrl":null,"url":null,"abstract":"<p>In (Shi et al. <i>Finite Fields Appl.</i> <b>80</b>, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field <span>\\(\\mathbb {F}_4\\)</span>. In this article, we extend their results over <span>\\(\\mathbb {F}_{q^2},\\)</span> where <i>q</i> is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over <span>\\(\\mathbb {F}_9.\\)</span> These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over <span>\\(\\mathbb {F}_q\\)</span>.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00741-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In (Shi et al. Finite Fields Appl. 80, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field \(\mathbb {F}_4\). In this article, we extend their results over \(\mathbb {F}_{q^2},\) where q is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over \(\mathbb {F}_9.\) These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over \(\mathbb {F}_q\).

有限域上可加循环码的迹对偶
Shi et al. 有限域应用 80, 102087 2022)研究了有限域 \(\mathbb {F}_4\) 上关于痕欧几里得和痕赫尔墨特内积的加循环互补对偶码。在本文中,我们扩展了他们在 \(\mathbb {F}_{q^2},\) 上的研究成果,其中 q 是奇素数幂。我们描述了可加循环码的代数结构,并得到了这些码的一类关于迹内积的对偶码。我们还利用生成多项式构造了几个在 \(\mathbb {F}_9.\) 上的加循环码的例子,这些码比相同长度和大小的线性码更好。此外,我们将这些码的子域码和痕码描述为 \(\mathbb {F}_q\) 上的线性循环码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信