Frequency domain‐based analytical solutions for one‐dimensional soil water flow in layered soils

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES
Jiong Zhu, Yuanyuan Zha, Tian‐Chyi Jim Yeh
{"title":"Frequency domain‐based analytical solutions for one‐dimensional soil water flow in layered soils","authors":"Jiong Zhu, Yuanyuan Zha, Tian‐Chyi Jim Yeh","doi":"10.1002/vzj2.20372","DOIUrl":null,"url":null,"abstract":"Solutions of the linearized Richardson–Richards Equation (RRE) for one‐dimensional soil water flow in layered soils with sinusoidal flux in the frequency domain are derived. We evaluate the accuracy of our analytical and other analytical solutions by comparing them with results from a standard numerical model. Our analytical solution agrees with the numerical solution under multi‐layered heterogeneous soil, while others disagree. We also demonstrate the capability of the proposed solution to simulate soil moisture dynamics under a realistic, multi‐frequency flux case. The procedure described in the paper is valid for any series of arbitrary periodic flux superpositions for layered heterogeneous . Moreover, our solution is efficient in the calculation compared with numerical solutions, especially when dealing with long‐time series soil moisture, which can provide a validation of numerical models.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"26 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20372","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solutions of the linearized Richardson–Richards Equation (RRE) for one‐dimensional soil water flow in layered soils with sinusoidal flux in the frequency domain are derived. We evaluate the accuracy of our analytical and other analytical solutions by comparing them with results from a standard numerical model. Our analytical solution agrees with the numerical solution under multi‐layered heterogeneous soil, while others disagree. We also demonstrate the capability of the proposed solution to simulate soil moisture dynamics under a realistic, multi‐frequency flux case. The procedure described in the paper is valid for any series of arbitrary periodic flux superpositions for layered heterogeneous . Moreover, our solution is efficient in the calculation compared with numerical solutions, especially when dealing with long‐time series soil moisture, which can provide a validation of numerical models.
基于频域的层状土壤中一维土壤水流动的解析解
针对频域内正弦通量的层状土壤中的一维土壤水流,推导了线性化理查森-理查兹方程(RRE)的解。通过与标准数值模型的结果进行比较,我们评估了我们的分析解和其他分析解的准确性。我们的分析方案与多层异质土壤下的数值方案一致,而其他方案则不一致。我们还展示了所提出的解决方案在现实的多频率通量情况下模拟土壤水分动态的能力。文中描述的程序适用于分层异质土壤的任意一系列周期性通量叠加。此外,与数值解法相比,我们的解法计算效率高,尤其是在处理长时间序列土壤水分时,可为数值模型提供验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信