Joint multiscale dynamics in soil–vegetation–atmosphere systems: Multifractal cross‐correlation analysis of arid and semiarid rangelands

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ernesto Sanz, Andrés F. Almeida‐Ñaulay, Carlos G. H. Díaz‐Ambrona, Sergio Zubelzu Mínguez, Ana M. Tarquis
{"title":"Joint multiscale dynamics in soil–vegetation–atmosphere systems: Multifractal cross‐correlation analysis of arid and semiarid rangelands","authors":"Ernesto Sanz, Andrés F. Almeida‐Ñaulay, Carlos G. H. Díaz‐Ambrona, Sergio Zubelzu Mínguez, Ana M. Tarquis","doi":"10.1002/vzj2.20374","DOIUrl":null,"url":null,"abstract":"Understanding the dynamics of the soil–vegetation–atmosphere (SVA) system, particularly in arid and semiarid regions, remains challenging due to its intricate and interdependent nature. This system creates problems for rangeland administration, such as insurance and risk management. This paper focuses on the complex interactions within the SVA system, particularly on rangeland ecosystems in Spain's semiarid and arid regions. By employing multifractal detrended cross‐correlation analysis (MFCCA), we explore the joint behavior of key variables, including precipitation (PCP), evapotranspiration (ETP), aridity index (Arid. I.), soil water availability (SWA), biomass (Bio), and normalized difference vegetation index (NDVI). Analyzing a 20‐year data series from Madrid and Almeria provinces, we reveal distinct patterns in the studied variables’ persistence, multifractality, and asymmetry. Notably, the differences in the generalized Hurst exponents ((<jats:italic>q</jats:italic>)) between Madrid and Almeria for SWA with NDVI, SWA with Bio, and NDVI with Bio underscore distinct interactions in these regions. Moreover, multifractal analyses unveil differences in the complexity of joint variables’ behaviors in the two regions. Almeria exhibits higher multifractality across variables, indicating more complex and variable environmental interactions, likely due to its more arid conditions. These findings suggest that Almeria has more sensitivity to changes, requiring adaptive management strategies, while in Madrid, water availability and related variables play a more dominant role in driving vegetation dynamics. These findings shed light through MFCCA on the nuanced dynamics of rangeland ecosystems in semiarid and arid regions, emphasizing the importance of considering complexity‐based approaches to understand the intricate interplay among key variables in the SVA system.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the dynamics of the soil–vegetation–atmosphere (SVA) system, particularly in arid and semiarid regions, remains challenging due to its intricate and interdependent nature. This system creates problems for rangeland administration, such as insurance and risk management. This paper focuses on the complex interactions within the SVA system, particularly on rangeland ecosystems in Spain's semiarid and arid regions. By employing multifractal detrended cross‐correlation analysis (MFCCA), we explore the joint behavior of key variables, including precipitation (PCP), evapotranspiration (ETP), aridity index (Arid. I.), soil water availability (SWA), biomass (Bio), and normalized difference vegetation index (NDVI). Analyzing a 20‐year data series from Madrid and Almeria provinces, we reveal distinct patterns in the studied variables’ persistence, multifractality, and asymmetry. Notably, the differences in the generalized Hurst exponents ((q)) between Madrid and Almeria for SWA with NDVI, SWA with Bio, and NDVI with Bio underscore distinct interactions in these regions. Moreover, multifractal analyses unveil differences in the complexity of joint variables’ behaviors in the two regions. Almeria exhibits higher multifractality across variables, indicating more complex and variable environmental interactions, likely due to its more arid conditions. These findings suggest that Almeria has more sensitivity to changes, requiring adaptive management strategies, while in Madrid, water availability and related variables play a more dominant role in driving vegetation dynamics. These findings shed light through MFCCA on the nuanced dynamics of rangeland ecosystems in semiarid and arid regions, emphasizing the importance of considering complexity‐based approaches to understand the intricate interplay among key variables in the SVA system.
土壤-植被-大气系统的联合多尺度动力学:干旱和半干旱牧场的多分形交叉相关分析
由于土壤-植被-大气(SVA)系统错综复杂且相互依存,因此了解该系统的动态(尤其是在干旱和半干旱地区)仍然具有挑战性。该系统给牧场管理(如保险和风险管理)带来了问题。本文重点研究 SVA 系统内部复杂的相互作用,尤其是西班牙半干旱和干旱地区的牧场生态系统。通过采用多分形去趋势交叉相关分析 (MFCCA),我们探讨了降水量 (PCP)、蒸散量 (ETP)、干旱指数 (Arid.I.)、土壤水分可用性 (SWA)、生物量 (Bio) 和归一化差异植被指数 (NDVI) 等关键变量的联合行为。通过分析马德里省和阿尔梅里亚省 20 年的数据序列,我们揭示了所研究变量的持续性、多重性和非对称性的独特模式。值得注意的是,马德里和阿尔梅里亚两地在 SWA 与 NDVI、SWA 与 Bio 以及 NDVI 与 Bio 的广义赫斯特指数((q))上的差异突出表明了这两个地区不同的相互作用。此外,多分形分析揭示了两个地区联合变量行为复杂性的差异。阿尔梅里亚各变量的多分形程度较高,表明环境相互作用更为复杂多变,这可能是由于该地区更为干旱所致。这些研究结果表明,阿尔梅里亚对变化的敏感度更高,需要采取适应性管理策略,而在马德里,水供应和相关变量在植被动态中起着更主要的驱动作用。这些研究结果通过多变量协同增效模式揭示了半干旱和干旱地区牧场生态系统的微妙动态,强调了考虑基于复杂性的方法以了解 SVA 系统中关键变量之间错综复杂的相互作用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信