{"title":"Inverse analysis of soil hydraulic parameters of layered soil profiles using physics‐informed neural networks with unsaturated water flow models","authors":"Koki Oikawa, Hirotaka Saito","doi":"10.1002/vzj2.20375","DOIUrl":null,"url":null,"abstract":"Information about the spatial distribution of soil hydraulic parameters is necessary for the accurate prediction of soil water flow and the coupled movement of chemicals and heat at the field scale using a process‐based model. Physics‐informed neural networks (PINNs), which can provide physical constraints in deep learning to obtain a mesh‐free solution, can be used to inversely estimate soil hydraulic parameters from less and noisy training data. Previous studies using PINNs have successfully estimated soil hydraulic parameters for homogeneous soil but estimating such parameters of layered soil profiles where the interface depth and the parameters are unknown still has some difficulties. The objective of this study was to develop PINNs to inversely estimate the distribution of soil hydraulic parameters, such as saturated hydraulic conductivity and <jats:italic>α</jats:italic> and <jats:italic>n</jats:italic> of the Mualem–van Genuchten model directly within layered soil profiles by predicting changes in the pressure head from training data based on simulation results at given depths during infiltration. The impact of factors affecting PINNs performance, such as the weights assigned to each component of the loss function, time range used in error computations, and number of samples used to assess the physical constraint, was investigated. By assigning a larger weight to the physical constraint and excluding the earlier stage of infiltration in the loss function, the changes in the pressure head and the three soil hydraulic parameter distributions within the layered soil were successfully estimated. The developed PINNs can be further applied to more complex soils and can be improved.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"42 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20375","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Information about the spatial distribution of soil hydraulic parameters is necessary for the accurate prediction of soil water flow and the coupled movement of chemicals and heat at the field scale using a process‐based model. Physics‐informed neural networks (PINNs), which can provide physical constraints in deep learning to obtain a mesh‐free solution, can be used to inversely estimate soil hydraulic parameters from less and noisy training data. Previous studies using PINNs have successfully estimated soil hydraulic parameters for homogeneous soil but estimating such parameters of layered soil profiles where the interface depth and the parameters are unknown still has some difficulties. The objective of this study was to develop PINNs to inversely estimate the distribution of soil hydraulic parameters, such as saturated hydraulic conductivity and α and n of the Mualem–van Genuchten model directly within layered soil profiles by predicting changes in the pressure head from training data based on simulation results at given depths during infiltration. The impact of factors affecting PINNs performance, such as the weights assigned to each component of the loss function, time range used in error computations, and number of samples used to assess the physical constraint, was investigated. By assigning a larger weight to the physical constraint and excluding the earlier stage of infiltration in the loss function, the changes in the pressure head and the three soil hydraulic parameter distributions within the layered soil were successfully estimated. The developed PINNs can be further applied to more complex soils and can be improved.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.