Exact moments for a run and tumble particle in a harmonic trap with a finite tumble time

Aoran Sun, Fangfu Ye, Rudolf Podgornik
{"title":"Exact moments for a run and tumble particle in a harmonic trap with a finite tumble time","authors":"Aoran Sun, Fangfu Ye, Rudolf Podgornik","doi":"arxiv-2409.00578","DOIUrl":null,"url":null,"abstract":"We study the problem of a run and tumble particle in a harmonic trap, with a\nfinite run and tumble time, by a direct integration of the equation of motion.\nAn exact 1D steady state distribution, diagram laws and a programmable Volterra\ndifference equation are derived to calculate any order of moments in any other\ndimension, both for steady state as well as the Laplace transform in time for\nthe intermediate states. We also use the moments to infer the distribution by\nconsidering a Gaussian quadrature for the corresponding measure, and from the\nscaling law of high order moments.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of a run and tumble particle in a harmonic trap, with a finite run and tumble time, by a direct integration of the equation of motion. An exact 1D steady state distribution, diagram laws and a programmable Volterra difference equation are derived to calculate any order of moments in any other dimension, both for steady state as well as the Laplace transform in time for the intermediate states. We also use the moments to infer the distribution by considering a Gaussian quadrature for the corresponding measure, and from the scaling law of high order moments.
有限翻滚时间谐波阱中运行和翻滚粒子的精确时刻
我们通过对运动方程的直接积分,研究了谐波陷阱中一个具有无限运行和翻滚时间的粒子的运行和翻滚问题。我们导出了精确的一维稳态分布、图解定律和可编程的伏特降维方程,以计算任何其他维度的任意阶矩,包括稳态以及中间状态的拉普拉斯时间变换。我们还通过考虑相应度量的高斯正交以及高阶矩的缩放规律,利用矩来推断分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信