Stochastic parametric modulation of linear and non-linear oscillators: Perturbation theory of the response function

Sourin Dey, Jayanta K. Bhattacharjee
{"title":"Stochastic parametric modulation of linear and non-linear oscillators: Perturbation theory of the response function","authors":"Sourin Dey, Jayanta K. Bhattacharjee","doi":"arxiv-2409.01625","DOIUrl":null,"url":null,"abstract":"We study a stochastically driven, damped nonlinear oscillator whose frequency\nis modulated by a white or coloured noise. Using diagrammatic perturbation\ntheory, we find that in the absence of nonlinearity, parametric modulation by a\ncoloured noise can lead to a Kapitza pendulum-like stabilization of an unstable\nconfiguration provided the noise is anti-correlated. Further, we show that for\nmodulation by a white noise of amplitude $\\lambda$ and correlation strength\n$F$, the system will have an extremely large response if the product of\n$\\lambda^{2}F$ equals a specific combination of the frequency and the damping\ncoefficient. This prediction can be experimentally tested.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a stochastically driven, damped nonlinear oscillator whose frequency is modulated by a white or coloured noise. Using diagrammatic perturbation theory, we find that in the absence of nonlinearity, parametric modulation by a coloured noise can lead to a Kapitza pendulum-like stabilization of an unstable configuration provided the noise is anti-correlated. Further, we show that for modulation by a white noise of amplitude $\lambda$ and correlation strength $F$, the system will have an extremely large response if the product of $\lambda^{2}F$ equals a specific combination of the frequency and the damping coefficient. This prediction can be experimentally tested.
线性和非线性振荡器的随机参数调制:响应函数的扰动理论
我们研究了一种随机驱动的阻尼非线性振荡器,其频率受白噪声或彩色噪声调制。利用图解扰动理论,我们发现在没有非线性的情况下,如果噪声是反相关的,那么彩色噪声的参数调制可以导致不稳定配置的卡皮查摆式稳定。此外,我们还证明,在振幅为$\lambda$、相关强度为$F$的白噪声的调制下,如果$\lambda^{2}F$的乘积等于频率和阻尼系数的特定组合,系统将产生极大的响应。这一预测可以在实验中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信