Joint probability density with radial, tangential, and perturbative forces

Jae-Won Jung, Sung Kyu Seo, Sungchul Kwon, Kyungsik Kim
{"title":"Joint probability density with radial, tangential, and perturbative forces","authors":"Jae-Won Jung, Sung Kyu Seo, Sungchul Kwon, Kyungsik Kim","doi":"arxiv-2409.02475","DOIUrl":null,"url":null,"abstract":"We derive the Fokker-Planck equation for an active particle with both radial\nand tangential force and perturbative force, and its approximate solution of\njoint probability density is obtained. In t>>u and u=0 regions, an active\nparticle leads to a super-diffusive distribution for radial velocity, while the\nmean squared tangential velocity with both radial and tangential force and\nperturbative force behaviors the Gaussian diffusion. As a result, the joint\nprobability density obtained may be similarly consistent with that for the\nself-propelled particle.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the Fokker-Planck equation for an active particle with both radial and tangential force and perturbative force, and its approximate solution of joint probability density is obtained. In t>>u and u=0 regions, an active particle leads to a super-diffusive distribution for radial velocity, while the mean squared tangential velocity with both radial and tangential force and perturbative force behaviors the Gaussian diffusion. As a result, the joint probability density obtained may be similarly consistent with that for the self-propelled particle.
径向力、切向力和扰动力的联合概率密度
我们推导了具有径向力、切向力和扰动力的主动粒子的福克-普朗克方程,并得到了其联合概率密度的近似解。在 t>>u 和 u=0 区域,主动粒子导致径向速度的超扩散分布,而同时具有径向力、切向力和扰动力的主题切向速度平方则表现为高斯扩散。因此,得到的联合概率密度可能与自推进粒子的概率密度相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信