Slope of Magnetic Field-Density Relation as An Indicator of Magnetic Dominance

Mengke Zhao, Guang-Xing Li, Keping Qiu
{"title":"Slope of Magnetic Field-Density Relation as An Indicator of Magnetic Dominance","authors":"Mengke Zhao, Guang-Xing Li, Keping Qiu","doi":"arxiv-2409.02786","DOIUrl":null,"url":null,"abstract":"The electromagnetic field is a fundamental force in nature that regulates the\nformation of stars in the universe. Despite decades of efforts, a reliable\nassessment of the importance of the magnetic fields in star formation relations\nremains missing. In star-formation research, our acknowledgment of the\nimportance of magnetic field is best summarized by the Cruther+ 2010 B-rho\nrelation. The relation is either interpreted as proof of the importance of a\nmagnetic field in the collapse, or the result of self-similar collapse where\nthe role of the magnetic is secondary to gravity. Using simulations, we find a\nfundamental relation, ${\\cal M}_{\\rm A}$-k$_{B-\\rho}$(slope of $B-\\rho$\nrelation) relation. This fundamental B-$\\rho$-slope relation enables one to\nmeasure the Alfv\\'enic Mach number, a direct indicator of the importance of the\nmagnetic field, using the distribution of data in the B-$\\rho$ plane. It allows\nus to drive the following empirical $B-\\rho$ relation \\begin{equation} \\frac{B}{B_c} = {\\rm exp}\\left(\\left(\\frac{\\gamma}{{\\cal\nK}}\\right)^{-1}\\left( \\frac{\\rho}{\\rho_c}\\right)^\\frac{\\gamma}{{\\cal\nK}}\\right)\\nonumber, \\end{equation} which offers an excellent fit to the\nCruther et al. data, where we assume ${\\cal M}_{\\rm A}-\\rho$ relation. The\nfoundational ${\\cal M}_{\\rm A}-{\\rm k}_{B-\\rho}$ relation provides an\nindependent way to measure the importance of magnetic field against the\nkinematic motion using multiple magnetic field measurements. Our approach\noffers a new interpretation of Cruther+2010, where a gradual decrease in the\nimportance of B at higher densities is implied.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"62 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electromagnetic field is a fundamental force in nature that regulates the formation of stars in the universe. Despite decades of efforts, a reliable assessment of the importance of the magnetic fields in star formation relations remains missing. In star-formation research, our acknowledgment of the importance of magnetic field is best summarized by the Cruther+ 2010 B-rho relation. The relation is either interpreted as proof of the importance of a magnetic field in the collapse, or the result of self-similar collapse where the role of the magnetic is secondary to gravity. Using simulations, we find a fundamental relation, ${\cal M}_{\rm A}$-k$_{B-\rho}$(slope of $B-\rho$ relation) relation. This fundamental B-$\rho$-slope relation enables one to measure the Alfv\'enic Mach number, a direct indicator of the importance of the magnetic field, using the distribution of data in the B-$\rho$ plane. It allows us to drive the following empirical $B-\rho$ relation \begin{equation} \frac{B}{B_c} = {\rm exp}\left(\left(\frac{\gamma}{{\cal K}}\right)^{-1}\left( \frac{\rho}{\rho_c}\right)^\frac{\gamma}{{\cal K}}\right)\nonumber, \end{equation} which offers an excellent fit to the Cruther et al. data, where we assume ${\cal M}_{\rm A}-\rho$ relation. The foundational ${\cal M}_{\rm A}-{\rm k}_{B-\rho}$ relation provides an independent way to measure the importance of magnetic field against the kinematic motion using multiple magnetic field measurements. Our approach offers a new interpretation of Cruther+2010, where a gradual decrease in the importance of B at higher densities is implied.
磁场-密度关系斜率作为磁场优势的指标
电磁场是调节宇宙中恒星形成的一种基本自然力。尽管经过了几十年的努力,但对磁场在恒星形成关系中重要性的可靠评估仍然缺失。在恒星形成研究中,我们对磁场重要性的认识最好的概括就是克拉瑟+ 2010 B-rh关系。这种关系要么被解释为磁场在坍缩中的重要性的证明,要么被解释为自相似坍缩的结果,在这种坍缩中磁场的作用次于引力。通过模拟,我们发现了一个基本关系,即${\cal M}_{\rm A}$-k$_{B-\rho}$($B-\rho$关系的斜率)关系。这种基本的B-$\rho$-斜率关系使我们能够利用B-$\rho$平面上的数据分布来测量Alfv\'enic马赫数,这是磁场重要性的一个直接指标。它允许我们驱动下面的经验$B-\rho$关系 \begin{equation}(开始{equation})\{frac{B}{B_c} = {\rm exp}\left(\left(\frac{\gamma}{\calK}}\right)^{-1}left( \frac{\rho}{\rho_c}\right)^\frac{\gamma}{\calK}}\right)\nonumber, (end{equation})这为Cruther等人的数据提供了很好的拟合。数据,其中我们假设了 $\{cal M}_\{rm A}-\rho$ 关系。这种基本的${cal M}_{\rm A}-{\rm k}_{B-\rho}$ 关系提供了一种独立的方法,可以利用多重磁场测量来衡量磁场对动力学运动的重要性。我们的方法为 Cruther+2010 提供了一种新的解释,即在密度较高时,B 的重要性会逐渐降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信