Characterizing the negative triangularity reactor core operating space with integrated modeling

H. S. Wilson, A. O. Nelson, J. McClenaghan, P. Rodriguez-Fernandez, J. Parisi, C. Paz-Soldan
{"title":"Characterizing the negative triangularity reactor core operating space with integrated modeling","authors":"H. S. Wilson, A. O. Nelson, J. McClenaghan, P. Rodriguez-Fernandez, J. Parisi, C. Paz-Soldan","doi":"arxiv-2409.03038","DOIUrl":null,"url":null,"abstract":"NT experiments have demonstrated core performance on par with positive\ntriangularity (PT) H-mode without edge-localized modes (ELMs), encouraging\nfurther study of an NT reactor core. In this work, we use integrated modeling\nto scope the operating space around two NT reactor strategies: a high-field,\ncompact fusion pilot plant concept and a low field, high aspect ratio concept.\nBy integrating equilibrium, core transport, and edge ballooning instability\nmodels, we establish a range of operating points with less than 50 MW\nscrape-off layer power and fusion power comparable to positive triangularity\n(PT) H-mode reactor concepts. Heating and seeded impurities are leveraged to\naccomplish the same fusion performance and scrape-off layer exhaust power for\nvarious pressure edge boundary conditions. Scans over these pressure edge\nconditions accommodate any current uncertainty of the properties of the NT edge\nand show that the performance of an NT reactor will be extremely dependent on\nthe edge pressure. The high-field case is found to enable lower scrape-off\nlayer power because it is capable of reaching high fusion powers at a\nrelatively compact size, which allows increased separatrix density without\nexceeding the Greenwald density limit. An increase in fusion power density is\nseen at weaker NT. Infinite-n ballooning instability models indicate that an NT\nreactor core can reach fusion powers comparable to leading PT H-mode reactor\nconcepts while remaining ballooning-stable. Seeded krypton is leveraged to\nfurther lower scrape-off layer power since NT does not have a requirement to\nremain in H-mode. We contextualize the NT reactor operating space by comparing\nto popular PT H-mode reactor concepts, and find that NT exhibits competitive\nELM-free performance with these concepts for a variety of edge conditions while\nmaintaining relatively low scrape-off layer power.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

NT experiments have demonstrated core performance on par with positive triangularity (PT) H-mode without edge-localized modes (ELMs), encouraging further study of an NT reactor core. In this work, we use integrated modeling to scope the operating space around two NT reactor strategies: a high-field, compact fusion pilot plant concept and a low field, high aspect ratio concept. By integrating equilibrium, core transport, and edge ballooning instability models, we establish a range of operating points with less than 50 MW scrape-off layer power and fusion power comparable to positive triangularity (PT) H-mode reactor concepts. Heating and seeded impurities are leveraged to accomplish the same fusion performance and scrape-off layer exhaust power for various pressure edge boundary conditions. Scans over these pressure edge conditions accommodate any current uncertainty of the properties of the NT edge and show that the performance of an NT reactor will be extremely dependent on the edge pressure. The high-field case is found to enable lower scrape-off layer power because it is capable of reaching high fusion powers at a relatively compact size, which allows increased separatrix density without exceeding the Greenwald density limit. An increase in fusion power density is seen at weaker NT. Infinite-n ballooning instability models indicate that an NT reactor core can reach fusion powers comparable to leading PT H-mode reactor concepts while remaining ballooning-stable. Seeded krypton is leveraged to further lower scrape-off layer power since NT does not have a requirement to remain in H-mode. We contextualize the NT reactor operating space by comparing to popular PT H-mode reactor concepts, and find that NT exhibits competitive ELM-free performance with these concepts for a variety of edge conditions while maintaining relatively low scrape-off layer power.
通过综合建模确定负三角形反应堆堆芯运行空间的特征
NT实验表明,堆芯性能与无边缘定位模式(ELM)的正三角柱体(PT)H模式相当,这鼓励了对NT反应堆堆芯的进一步研究。在这项工作中,我们利用综合建模来确定两种 NT 反应堆策略的运行空间范围:一种是高场强、紧凑型聚变试验装置概念,另一种是低场强、高纵横比概念。通过整合平衡、堆芯输运和边缘气球不稳定性模型,我们确定了一系列运行点,其刮离层功率小于 50 兆瓦,聚变功率与正三角(PT)H 型反应堆概念相当。在不同的压力边缘边界条件下,利用加热和种子杂质来实现相同的聚变性能和刮除层排气功率。在这些压力边缘条件下进行的扫描,考虑到了目前新界边缘特性的任何不确定性,并表明新界反应堆的性能将极其依赖于边缘压力。研究发现,高场情况能够降低刮擦层的功率,因为它能够以相对紧凑的尺寸达到较高的聚变功率,从而在不超过格林沃尔德密度极限的情况下提高分离矩阵密度。在较弱的 NT 下,聚变功率密度会增加。无限正气球不稳定性模型表明,NT 反应堆堆芯可以达到与领先的 PT H 模式反应堆概念相当的聚变功率,同时保持气球稳定。由于 NT 并不要求保持 H 模式,因此可以利用种子氪进一步降低刮离层功率。通过与流行的 PT H 模式反应堆概念进行比较,我们确定了 NT 反应堆的操作空间,并发现在各种边缘条件下,NT 与这些概念相比具有具有竞争力的无ELM 性能,同时还能保持相对较低的刮除层功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信