Design Optimization of Nuclear Fusion Reactor through Deep Reinforcement Learning

Jinsu Kim, Jaemin Seo
{"title":"Design Optimization of Nuclear Fusion Reactor through Deep Reinforcement Learning","authors":"Jinsu Kim, Jaemin Seo","doi":"arxiv-2409.08231","DOIUrl":null,"url":null,"abstract":"This research explores the application of Deep Reinforcement Learning (DRL)\nto optimize the design of a nuclear fusion reactor. DRL can efficiently address\nthe challenging issues attributed to multiple physics and engineering\nconstraints for steady-state operation. The fusion reactor design computation\nand the optimization code applicable to parallelization with DRL are developed.\nThe proposed framework enables finding the optimal reactor design that\nsatisfies the operational requirements while reducing building costs.\nMulti-objective design optimization for a fusion reactor is now simplified by\nDRL, indicating the high potential of the proposed framework for advancing the\nefficient and sustainable design of future reactors.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the application of Deep Reinforcement Learning (DRL) to optimize the design of a nuclear fusion reactor. DRL can efficiently address the challenging issues attributed to multiple physics and engineering constraints for steady-state operation. The fusion reactor design computation and the optimization code applicable to parallelization with DRL are developed. The proposed framework enables finding the optimal reactor design that satisfies the operational requirements while reducing building costs. Multi-objective design optimization for a fusion reactor is now simplified by DRL, indicating the high potential of the proposed framework for advancing the efficient and sustainable design of future reactors.
通过深度强化学习优化核聚变反应堆的设计
本研究探讨了应用深度强化学习(DRL)优化核聚变反应堆设计的问题。DRL 可以有效地解决稳态运行的多重物理和工程约束所带来的挑战性问题。通过深度强化学习,核聚变反应堆的多目标设计优化得以简化,这表明该框架在推进未来反应堆的高效和可持续设计方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信