$E\times B$ shear suppression of microtearing based transport in spherical tokamaks

B. S. Patel, M. R. Hardman, D. Kennedy, M. Giacomin, D. Dickinson, C. M. Roach
{"title":"$E\\times B$ shear suppression of microtearing based transport in spherical tokamaks","authors":"B. S. Patel, M. R. Hardman, D. Kennedy, M. Giacomin, D. Dickinson, C. M. Roach","doi":"arxiv-2409.08216","DOIUrl":null,"url":null,"abstract":"Electromagnetic microtearing modes (MTMs) have been observed in many\ndifferent spherical tokamak regimes. Understanding how these and other\nelectromagnetic modes nonlinearly saturate is likely critical in understanding\nthe confinement of a high $\\beta$ spherical tokamak (ST). Equilibrium $E\\times\nB$ sheared flows have sometimes been found to significantly suppress low\n$\\beta$ ion scale transport in both gyrokinetic simulations and in experiment.\nThis work aims to understand the conditions under which $E\\times B$ sheared\nflow impacts on the saturation of MTM simulations. Two experimental regimes are\nexamined from MAST and NSTX, on surfaces that have unstable MTMs. The MTM\ndriven transport on a local flux surface in MAST is shown to be more resilient\nto suppression via $E\\times B$ shear, compared to the case from NSTX where the\nMTM transport is found to be significantly suppressed. This difference in the\nresponse to flow shear is explained through the impact of magnetic shear,\n$\\hat{s}$ on the MTM linear growth rate dependence on ballooning angle,\n$\\theta_0$. At low $\\hat{s}$, the growth rate depends weakly on $\\theta_0$, but\nat higher $\\hat{s}$, the MTM growth rate peaks at $\\theta_0 = 0$, with regions\nof stability at higher $\\theta_0$. Equilibrium $E\\times B$ sheared flows act to\nadvect the $\\theta_0$ of a mode in time, providing a mechanism which suppresses\nthe transport from these modes when they become stable. The dependence of\n$\\gamma^{MTM}$ on $\\theta_0$ is in qualitative agreement with a recent theory\n[M.R. Hardman et al (2023)] at low $\\beta$ when $q\\sim1$, but the agreement\nworsens at higher $q$ where the theory breaks down. This work highlights the\nimportant role of the safety factor profile in determining the impact of\nequilibrium $E\\times B$ shear on the saturation level of MTM turbulence.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic microtearing modes (MTMs) have been observed in many different spherical tokamak regimes. Understanding how these and other electromagnetic modes nonlinearly saturate is likely critical in understanding the confinement of a high $\beta$ spherical tokamak (ST). Equilibrium $E\times B$ sheared flows have sometimes been found to significantly suppress low $\beta$ ion scale transport in both gyrokinetic simulations and in experiment. This work aims to understand the conditions under which $E\times B$ sheared flow impacts on the saturation of MTM simulations. Two experimental regimes are examined from MAST and NSTX, on surfaces that have unstable MTMs. The MTM driven transport on a local flux surface in MAST is shown to be more resilient to suppression via $E\times B$ shear, compared to the case from NSTX where the MTM transport is found to be significantly suppressed. This difference in the response to flow shear is explained through the impact of magnetic shear, $\hat{s}$ on the MTM linear growth rate dependence on ballooning angle, $\theta_0$. At low $\hat{s}$, the growth rate depends weakly on $\theta_0$, but at higher $\hat{s}$, the MTM growth rate peaks at $\theta_0 = 0$, with regions of stability at higher $\theta_0$. Equilibrium $E\times B$ sheared flows act to advect the $\theta_0$ of a mode in time, providing a mechanism which suppresses the transport from these modes when they become stable. The dependence of $\gamma^{MTM}$ on $\theta_0$ is in qualitative agreement with a recent theory [M.R. Hardman et al (2023)] at low $\beta$ when $q\sim1$, but the agreement worsens at higher $q$ where the theory breaks down. This work highlights the important role of the safety factor profile in determining the impact of equilibrium $E\times B$ shear on the saturation level of MTM turbulence.
球形托卡马克中基于微撕裂传输的剪切抑制
在许多不同的球形托卡马克机制中都观测到了电磁微earing模式(MTMs)。了解这些模式和其他电磁模式如何非线性饱和,对于理解高贝塔级球形托卡马克(ST)的约束可能至关重要。在陀螺动力学模拟和实验中,有时会发现平衡的$E(timesB)剪切流会显著抑制低$\beta$离子尺度的传输。这项工作旨在了解$E(timesB)剪切流对MTM模拟饱和的影响条件。在具有不稳定 MTM 的表面上,对 MAST 和 NSTX 的两种实验机制进行了研究。结果表明,在MAST的局部通量表面上,MTM驱动的输运通过$E/times B$剪切力被抑制的能力更强,而在NSTX的情况下,MTM输运被明显抑制。这种对流动剪切力反应的差异可以通过磁剪切力($\hat{s}$)对MTM线性增长率依赖于气球角($\theta_0$)的影响来解释。在低$\hat{s}$时,增长率对$\theta_0$的依赖性很弱,但在高$\hat{s}$时,MTM增长率在$\theta_0 = 0$时达到峰值,在高$\theta_0$时有稳定区域。平衡的 $E\times B$ 剪切流在时间上对模式的 $\theta_0$起着平移作用,提供了一种机制,当这些模式变得稳定时,它抑制了这些模式的传输。gamma^{MTM}$对$theta_0$的依赖性与最近的理论[M.R. Hardman et al (2023)]在低$\beta$时(当$q\sim1$时)的定性一致,但在高$q$时,一致性变差,此时理论崩溃。这项工作强调了安全系数剖面在确定平衡 $E\times B$ 剪切力对 MTM 湍流饱和水平的影响方面的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信